显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection

本文主要是介绍显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BASNet: Boundary-Aware Salient Object Detection

简述:

对于显著性目标检测,以往的研究大多集中在区域精度上,而不是边界质量上。在这篇论文中,我们提出了一种predict-refine architecture,BASNet,以及一种新的混合损耗来实现边界感知的突出对象的设计。

问题or相关工作:在这里插入图片描述

由上图,可以看到现在的方法(FCN等),预测的显著性图在精细结构和/或边界上仍然有缺陷,显著性预测目标主要存在两个挑战,①需要聚合多层次深度特征来获取整个图像的全局意义。②交叉熵损失容易造成边界模糊。
  作者使用新的残差模块与U-Net编码器网络相结合,在Encoder-Decoder网络后面连接细化模块改进预测地图。并提出混合交叉损失(BCE、SSIM、IoU)来提高置信度显著图和清晰地边界。

模型:

整体框架:

在这里插入图片描述
  该架构由一个密集监督的编译码网络和一个残差细化模块组成,分别负责显著性预测和显著性映射细化。经典的Encode-Decode网络, predict网络的结构更加深一些,而fine网络则浅一些。前面的Encode对图像进行提取特征,使用Pooling方法得到了分辨率逐步变小的高层语义特征,后面的Decode部分则负责将高层语义信息逐步还原放大,从而逐步获得大分辨率的feature map图,最终输出和原图一样大小的显著性图。
  在Encode和Decode之间,会有shortcut,将相同分辨率的feature map图相加,从而让最终的输出的feature map能够兼顾low-level和high-level的特征。除此之外, 在decode的过程中,共有 6 种不同分辨率的feature map图,再加上encode阶段最后一层的feature map,一共使用了7个feature map进行loss算,这种多层多loss的方法有点类似于中继loss,一方面可以帮助网络更好的收敛,另一方面可以让网络关注到不同尺度的显著性图。为了细化粗糙显著性映射中的区域和边界缺陷,作者提出的一种新的剩余细化模型如下图c(总框图的右侧)
在这里插入图片描述
混合Loss
  混合损耗通过融合二进制交叉方向(BCE)、结构相似度(SSIM)和交叉过并(IoU)损耗,引导网络在像素级、patch级和map级三个层次上学习输入图像与地面真实值之间的转换。总的loss等于每层的loss的加权和:
在这里插入图片描述
  每层的loss又由三部分loss组成:
在这里插入图片描述
BCE Loss(其中r,c表示像素坐标,G为真值,S为预测值),因此是pixel-level的loss: 在这里插入图片描述
Ssim Loss其中,x,y集合表示示从预测的显著性图和groundtruth上抠出的NN区域。 μ_x,μ_y,σ_x,σ_y,σ_xy分别为x和y的均值、方差、协方差。*
在这里插入图片描述  每个像素点的产生的loss都与其附近的局部patch有关(这里是N*N的patch),因此在训练的过程中,会对物体边缘部分的loss值加强,对非边缘部分抑制。正式因为这个loss的存在,使得该算法可以关注到更多的目标显著性的边缘细节信息。

IoU Loss:S、G和BCE loss的含义是一样的。
在这里插入图片描述在这里插入图片描述
  上图可以看到,利用BCE来保持一个平滑的梯度所有像素,而使用IoU给更多的重点在前景。SSIM是用来鼓励预测尊重原始图像的结构,使得边界更加的清晰。

实验:

消融实验:在这里插入图片描述
与其他方法的对比:
在这里插入图片描述  可以看到作者提出的方法在显著性检测常见的是数据集上都取得了不错的成果,具有泛化能力,并且检测的边缘更加清晰。

这篇关于显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745911

相关文章

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可