显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection

本文主要是介绍显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BASNet: Boundary-Aware Salient Object Detection

简述:

对于显著性目标检测,以往的研究大多集中在区域精度上,而不是边界质量上。在这篇论文中,我们提出了一种predict-refine architecture,BASNet,以及一种新的混合损耗来实现边界感知的突出对象的设计。

问题or相关工作:在这里插入图片描述

由上图,可以看到现在的方法(FCN等),预测的显著性图在精细结构和/或边界上仍然有缺陷,显著性预测目标主要存在两个挑战,①需要聚合多层次深度特征来获取整个图像的全局意义。②交叉熵损失容易造成边界模糊。
  作者使用新的残差模块与U-Net编码器网络相结合,在Encoder-Decoder网络后面连接细化模块改进预测地图。并提出混合交叉损失(BCE、SSIM、IoU)来提高置信度显著图和清晰地边界。

模型:

整体框架:

在这里插入图片描述
  该架构由一个密集监督的编译码网络和一个残差细化模块组成,分别负责显著性预测和显著性映射细化。经典的Encode-Decode网络, predict网络的结构更加深一些,而fine网络则浅一些。前面的Encode对图像进行提取特征,使用Pooling方法得到了分辨率逐步变小的高层语义特征,后面的Decode部分则负责将高层语义信息逐步还原放大,从而逐步获得大分辨率的feature map图,最终输出和原图一样大小的显著性图。
  在Encode和Decode之间,会有shortcut,将相同分辨率的feature map图相加,从而让最终的输出的feature map能够兼顾low-level和high-level的特征。除此之外, 在decode的过程中,共有 6 种不同分辨率的feature map图,再加上encode阶段最后一层的feature map,一共使用了7个feature map进行loss算,这种多层多loss的方法有点类似于中继loss,一方面可以帮助网络更好的收敛,另一方面可以让网络关注到不同尺度的显著性图。为了细化粗糙显著性映射中的区域和边界缺陷,作者提出的一种新的剩余细化模型如下图c(总框图的右侧)
在这里插入图片描述
混合Loss
  混合损耗通过融合二进制交叉方向(BCE)、结构相似度(SSIM)和交叉过并(IoU)损耗,引导网络在像素级、patch级和map级三个层次上学习输入图像与地面真实值之间的转换。总的loss等于每层的loss的加权和:
在这里插入图片描述
  每层的loss又由三部分loss组成:
在这里插入图片描述
BCE Loss(其中r,c表示像素坐标,G为真值,S为预测值),因此是pixel-level的loss: 在这里插入图片描述
Ssim Loss其中,x,y集合表示示从预测的显著性图和groundtruth上抠出的NN区域。 μ_x,μ_y,σ_x,σ_y,σ_xy分别为x和y的均值、方差、协方差。*
在这里插入图片描述  每个像素点的产生的loss都与其附近的局部patch有关(这里是N*N的patch),因此在训练的过程中,会对物体边缘部分的loss值加强,对非边缘部分抑制。正式因为这个loss的存在,使得该算法可以关注到更多的目标显著性的边缘细节信息。

IoU Loss:S、G和BCE loss的含义是一样的。
在这里插入图片描述在这里插入图片描述
  上图可以看到,利用BCE来保持一个平滑的梯度所有像素,而使用IoU给更多的重点在前景。SSIM是用来鼓励预测尊重原始图像的结构,使得边界更加的清晰。

实验:

消融实验:在这里插入图片描述
与其他方法的对比:
在这里插入图片描述  可以看到作者提出的方法在显著性检测常见的是数据集上都取得了不错的成果,具有泛化能力,并且检测的边缘更加清晰。

这篇关于显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745911

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input