显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection

本文主要是介绍显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BASNet: Boundary-Aware Salient Object Detection

简述:

对于显著性目标检测,以往的研究大多集中在区域精度上,而不是边界质量上。在这篇论文中,我们提出了一种predict-refine architecture,BASNet,以及一种新的混合损耗来实现边界感知的突出对象的设计。

问题or相关工作:在这里插入图片描述

由上图,可以看到现在的方法(FCN等),预测的显著性图在精细结构和/或边界上仍然有缺陷,显著性预测目标主要存在两个挑战,①需要聚合多层次深度特征来获取整个图像的全局意义。②交叉熵损失容易造成边界模糊。
  作者使用新的残差模块与U-Net编码器网络相结合,在Encoder-Decoder网络后面连接细化模块改进预测地图。并提出混合交叉损失(BCE、SSIM、IoU)来提高置信度显著图和清晰地边界。

模型:

整体框架:

在这里插入图片描述
  该架构由一个密集监督的编译码网络和一个残差细化模块组成,分别负责显著性预测和显著性映射细化。经典的Encode-Decode网络, predict网络的结构更加深一些,而fine网络则浅一些。前面的Encode对图像进行提取特征,使用Pooling方法得到了分辨率逐步变小的高层语义特征,后面的Decode部分则负责将高层语义信息逐步还原放大,从而逐步获得大分辨率的feature map图,最终输出和原图一样大小的显著性图。
  在Encode和Decode之间,会有shortcut,将相同分辨率的feature map图相加,从而让最终的输出的feature map能够兼顾low-level和high-level的特征。除此之外, 在decode的过程中,共有 6 种不同分辨率的feature map图,再加上encode阶段最后一层的feature map,一共使用了7个feature map进行loss算,这种多层多loss的方法有点类似于中继loss,一方面可以帮助网络更好的收敛,另一方面可以让网络关注到不同尺度的显著性图。为了细化粗糙显著性映射中的区域和边界缺陷,作者提出的一种新的剩余细化模型如下图c(总框图的右侧)
在这里插入图片描述
混合Loss
  混合损耗通过融合二进制交叉方向(BCE)、结构相似度(SSIM)和交叉过并(IoU)损耗,引导网络在像素级、patch级和map级三个层次上学习输入图像与地面真实值之间的转换。总的loss等于每层的loss的加权和:
在这里插入图片描述
  每层的loss又由三部分loss组成:
在这里插入图片描述
BCE Loss(其中r,c表示像素坐标,G为真值,S为预测值),因此是pixel-level的loss: 在这里插入图片描述
Ssim Loss其中,x,y集合表示示从预测的显著性图和groundtruth上抠出的NN区域。 μ_x,μ_y,σ_x,σ_y,σ_xy分别为x和y的均值、方差、协方差。*
在这里插入图片描述  每个像素点的产生的loss都与其附近的局部patch有关(这里是N*N的patch),因此在训练的过程中,会对物体边缘部分的loss值加强,对非边缘部分抑制。正式因为这个loss的存在,使得该算法可以关注到更多的目标显著性的边缘细节信息。

IoU Loss:S、G和BCE loss的含义是一样的。
在这里插入图片描述在这里插入图片描述
  上图可以看到,利用BCE来保持一个平滑的梯度所有像素,而使用IoU给更多的重点在前景。SSIM是用来鼓励预测尊重原始图像的结构,使得边界更加的清晰。

实验:

消融实验:在这里插入图片描述
与其他方法的对比:
在这里插入图片描述  可以看到作者提出的方法在显著性检测常见的是数据集上都取得了不错的成果,具有泛化能力,并且检测的边缘更加清晰。

这篇关于显著性检测论文详解(一):BASNet: Boundary-Aware Salient Object Detection的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745911

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原