yolov8添加注意力机制模块-CBAM

2024-02-25 11:52

本文主要是介绍yolov8添加注意力机制模块-CBAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

修改

  1. 在tasks.py(路径:ultralytics-main/ultralytics-main - attention/ultralytics/nn/tasks.py)文件中,引入CBAM模块。因为yolov8源码中已经包含CBAM模块,在conv.py文件中(路径:ultralytics-main/ultralytics-main - attention/ultralytics/nn/modules/conv.py),这里就就用自己写了。
  2. 修改tasks.py文件,搜索parse_model。在指定位置添加代码。
            elif m is CBAM:  # todo 源码修改 (增加了elif)"""ch[f]:上一层的args[0]:第0个参数c1:输入通道数c2:输出通道数"""c1, c2 = ch[f], args[0]# print("ch[f]:",ch[f])# print("args[0]:",args[0])# print("args:",args)# print("c1:",c1)# print("c2:",c2)if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(c2 * width, 8)args = [c1, *args[1:]]

    3.修改yolov8.yaml文件位置(ultralytics-main/ultralytics-main - attention/ultralytics/cfg/models/v8/yolov8.yaml)。修改head模块,修改的内容如下图。

        4.测试打印网络。已经添加成功。

分析

一般来说,注意力机制通常被分为以下基本四大类:

通道注意力 Channel Attention

空间注意力机制 Spatial Attention

时间注意力机制 Temporal Attention

分支注意力机制 Branch Attention

CBAM:通道注意力和空间注意力的集成者

源码解读

这段代码是对通道的注意力。首先经过自适应平均池化层,它会对每个输入通道的空间维度进行全局平均池化,并输出一个具有空间大小为 1x1 的特征图。然后是一个卷积操作,这相当于是对每个通道进行独立的全连接层变换,因为卷积核大小为1。

最后经过Sigmoid函数,将卷积层的输出转换为权重因子,范围在(0, 1)最后,这些权重因子与原始输入x逐元素相乘,以得到加权后的特征图,这一操作实现了注意力机制,允许模型专注于更有信息量的通道。

class ChannelAttention(nn.Module):"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""def __init__(self, channels: int) -> None:"""Initializes the class and sets the basic configurations and instance variables required."""super().__init__()self.pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)self.act = nn.Sigmoid()def forward(self, x: torch.Tensor) -> torch.Tensor:"""Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""return x * self.act(self.fc(self.pool(x)))

下面是一个空间注意力模块,旨在通过对输入特征图加权来强调或抑制某些空间区域。空间注意力通常用于强调图像的重要部分并抑制不重要的部分。

self.cv1 是一个卷积层,有两个输入通道,一个输出通道,和可选的 kernel_size 与 padding。由于 bias=False,这个卷积层不会有偏置参数。两个输入通道对应于输入特征图的均值和最大值。

forward中

  1. torch.mean(x, 1, keepdim=True) 计算输入张量 x 每个样本的通道维度的均值,keepdim=True 表示保持输出张量的维度不变。

  2. torch.max(x, 1, keepdim=True)[0] 计算输入张量 x 每个样本的通道维度的最大值,[0] 是因为 torch.max 返回一个元组,包含最大值和相应的索引。

  3. torch.cat([avg_out, max_out], 1) 将均值和最大值沿通道维度拼接起来,这样每个空间位置都有两个通道:其均值和最大值。

  4. self.cv1(x_cat) 对拼接的结果应用 1x2 卷积,生成一个单通道的特征图,该特征图对应于每个空间位置的注意力权重。

  5. self.act(...) 应用 Sigmoid 激活函数将注意力权重映射到 (0, 1) 范围内。

  6. x * scale 将原始输入 x 与计算得到的空间注意力权重相乘,这样每个空间位置的特征值都会根据其重要性加权,实现了特征重标定。

最终,forward 方法返回的是加权后的输入特征图(对特征图的每个元素值×权值),它突出了输入中更重要的空间区域。

class SpatialAttention(nn.Module):"""Spatial-attention module."""def __init__(self, kernel_size=7):"""Initialize Spatial-attention module with kernel size argument."""super().__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7'padding = 3 if kernel_size == 7 else 1self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.act = nn.Sigmoid()def forward(self, x):"""Apply channel and spatial attention on input for feature recalibration."""return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))

下面就是CBAM,是上面两个模块的组合,通道注意力和空间注意力。通道注意力专注于哪些通道更重要,而空间注意力则集中在输入特征图中的哪些空间位置更重要。

  • 输入 x 首先通过 self.channel_attention,这个步骤会重新调整每个通道的重要性。
  • 然后,调整通道重要性后的特征图 x 通过 self.spatial_attention,这个步骤会重新调整特征图中每个位置的重要性。
  • 最终,这两个注意力机制的结果被串联起来,形成了最终的输出。

这种结构可以提高网络对于输入特征的逐通道和逐空间位置的重要性评估能力,进而可能提高模型的性能。

class CBAM(nn.Module):"""Convolutional Block Attention Module."""def __init__(self, c1, kernel_size=7):"""Initialize CBAM with given input channel (c1) and kernel size."""super().__init__()self.channel_attention = ChannelAttention(c1)self.spatial_attention = SpatialAttention(kernel_size)def forward(self, x):"""Applies the forward pass through C1 module."""return self.spatial_attention(self.channel_attention(x))

这篇关于yolov8添加注意力机制模块-CBAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745394

相关文章

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Java 的 Condition 接口与等待通知机制详解

《Java的Condition接口与等待通知机制详解》在Java并发编程里,实现线程间的协作与同步是极为关键的任务,本文将深入探究Condition接口及其背后的等待通知机制,感兴趣的朋友一起看... 目录一、引言二、Condition 接口概述2.1 基本概念2.2 与 Object 类等待通知方法的区别

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

嵌入式Linux驱动中的异步通知机制详解

《嵌入式Linux驱动中的异步通知机制详解》:本文主要介绍嵌入式Linux驱动中的异步通知机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、异步通知的核心概念1. 什么是异步通知2. 异步通知的关键组件二、异步通知的实现原理三、代码示例分析1. 设备结构

JVM垃圾回收机制之GC解读

《JVM垃圾回收机制之GC解读》:本文主要介绍JVM垃圾回收机制之GC,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、死亡对象的判断算法1.1 引用计数算法1.2 可达性分析算法二、垃圾回收算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法2.4