详解 leetcode 221题:最大正方形

2024-02-25 11:30

本文主要是介绍详解 leetcode 221题:最大正方形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学好算法没有捷径,最好的捷径就是多刷题,并且跳出舒适区,每道题都要寻找最优解,也不能老是做那些你自己比较擅长的题,不定期更新 Leetcode 的题,每道题都会给出多种解法以及最优解。

题目描述

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例

输入: 1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0输出: 4

解法一:暴力法

在一个二维矩形中,如果我们要确定一个矩阵,我们只需要知道确定它的左上角右下角就可以了,而正方形相当于边相等的矩阵。这道题暴力法还是比较好做,就是把矩阵中的每一个点,都充当左上角来遍历搜索一下。

例如我刚开始把(0,0)这个点当左上角,然后向右下角搜索

搜索的过程中,用一个变量来记录最大正方形的面积。接着用(0,1)作为左上角,不断着向右下角搜索

当然,(0,1)这个位置本身就是 0 ,所以是没有搜索的必要的,我这里只是做个演示。最终的代码如下,代码中也有详细的介绍

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;// 记录最大边长int max = 0;for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {// 把(i,j)作为左上角向右下角搜索if (matrix[i][j] == '1') {// 此时正方形的边长int sqlen = 1;boolean flag = true;//记录是否遇到0的位置while (sqlen + i < rows && sqlen + j < cols && flag) {for (int k = j; k <= sqlen + j; k++) {if (matrix[i + sqlen][k] == '0') {flag = false;break;}}for (int k = i; k <= sqlen + i; k++) {if (matrix[k][j + sqlen] == '0') {flag = false;break;}}if (flag)sqlen++;}if (max < sqlen) {max = sqlen;}}}}return max * max;}
  • 时间复杂度:O((mn)^2)
  • 空间复杂度:O(1)

解法二:动态规划

对于动态规划,大部分情况下我们都会定义一个二维数组dp,然后定义dp[i][j] 的含义,接着推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。当然,也可以是推导 dp[i][j] 与 dp[i+1][j]、dp[i][j+1]、dp[i+1][j+1] 之间的关系,下面我们讲下用 dp 该怎么解这道题。

1、首先我们定义 dp[i][j] 含义为正方形以 dp[i][j] 作为右下角时的最大边长值

2、接着我们来推导他们的关系

显然,对于任意一点 dp[i][j],由于该点是正方形的右下角,所以该点的右边,下边,右下边都不用考虑,关心的是左边,上边,和左上边,也就是我们要推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。他们有如下关系

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

这个关系其实也不算难推,毕竟不能有 0 存在,所以只能取交他们三个点的交集。你们可以画个图,可能就比较好理解了。

代码如下:

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[][] dp = new int[rows + 1][cols + 1];int max = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {if (matrix[i-1][j-1] == '1'){dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;max = Math.max(max, dp[i][j]);}}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n*m)

解法三:动态规划优化

用动态规划时,可以说 80% 都是用二维数组,但是 80% 也都可以优化成一维数组,这很容易理解,大家看这个公式

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

通过上面的公式我们可以知道,我们要算 dp[i][j] 的值时,只需要用到 dp[i-1][j], dp[i][j-1], dp[i-1][j-1] 三个值就可以了。也就是说,我们在算矩阵 dp 第 i 行的值时,只需要用第 (i - 1) 行的值,至于(i-2)的值根本就不需要用到

所以我们只需要用一个一维数组就可以了,然后每次算出第 i 行的值,就马上用一维数组 dp[0…n] 把这行值保存起来,供计算 i+1 行时使用。

如下图

new_dp[i] 相当于二维矩阵的 dp[i][j]

dp[i] 相当于 dp[i-1][j]

dp[i-1] 相当于 dp[i-1][j]

pre 相当于 dp[i-1][j-1]。

然后用一维矩阵的话,我们每次计算出 new_dp[i] 后,就马上用 new_dp[i] 覆盖 dp[i] 的值,并且还要用一个变量 pre 来保存dp[i-1][j-1]的值。

好吧,估计你也给我绕晕了,如果不大理解,强烈建议画图模拟一下

最终代码如下

    public int maximalSquare(char[][] matrix) {if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[] dp = new int[cols + 1];int max = 0, prev = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {int temp = dp[j];if (matrix[i - 1][j - 1] == '1') {dp[j] = Math.min(Math.min(dp[j - 1], prev), dp[j]) + 1;max = Math.max(max, dp[j]);} else {dp[j] = 0;}prev = temp;}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n)

额外话

动态规划是一个比较难的算法思想,特别是对于初学者,遇到动态规划的题基本凉,我刚开始也被搞过,后来能看懂关于动态规划的答案,但是自己写不出,一气之下做了几十道动态规划的题,发现做来做去套路都差不多,于是总结出了自己的一个套路模板,从此 80% 的动态规划题都会做。所以呢,后面找个时间我得写一写我的经验,这个经验适合看得懂动态规划,但又不知道怎么下手的人,不过写这篇文章估计需要挺长时间,所以几时写还没确定,,,,大家也可以学我,直接做 50 道动态规划的题,准稳。

看完有收获?那么希望老铁别吝啬你的三连击哦

1、点赞,可以让更多的人看到这篇文章
2、关注我的原创微信公众号『苦逼的码农』,第一时间阅读我的文章,主打算法。公众号后台回复『电子书』,还送你一份电子书大礼包哦。
3、也欢迎关注我的博客哦。

公众号主页

作者简洁

作者:帅地,一位热爱、认真写作的小伙,目前维护原创公众号:『苦逼的码农』,以写了150多篇文章,专注于写 算法、计算机基础知识等提升你内功的文章,期待你的关注。
转载说明:务必注明来源(注明:来源于公众号:苦逼的码农, 作者:帅地)

这篇关于详解 leetcode 221题:最大正方形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745330

相关文章

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

SpringBoot 中 CommandLineRunner的作用示例详解

《SpringBoot中CommandLineRunner的作用示例详解》SpringBoot提供的一种简单的实现方案就是添加一个model并实现CommandLineRunner接口,实现功能的... 目录1、CommandLineRunnerSpringBoot中CommandLineRunner的作用