【pytorch】tensor.detach()和tensor.data的区别

2024-02-25 06:52

本文主要是介绍【pytorch】tensor.detach()和tensor.data的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 序言
        • 相同点
        • 不同点
        • 测试实例
        • 应用

序言
  • .detach()和.data都可以用来分离tensor数据,下面进行比较
  • pytorch0.4及之后的版本,.data仍保留,但建议使用.detach()
相同点
  • x.detach()和x.data返回和x相同数据的tensor,这个新的tensor和原来的tensor共用数据,一者改变,另一者也会跟着改变
  • 新分离得到的tensor的requires_grad = False, 即不可求导的
不同点
  • (1) .data是一个属性,.detach()是一个方法
  • (2) x.data不能被autograd追踪求微分,即使被改了也能错误求导;x.detach()也不能被autograd追踪求微分,被改了会直接报错,避免错误的产生
  • (3) .data是不安全的,.detach()是安全的
测试实例
  • .data测试

    import torcha = torch.tensor([1 ,2 ,3.], requires_grad = True)  # float类型,支持求导
    out = a.sigmoid()
    print(out)    # 输出(0.0, 1.0)结果
    b = out.data  # 分离tensor
    b.zero_()     # 改变b的值,原来的out也会改变
    print(b.requires_grad)  # .data后requires_grad=False
    print(b)                # 归0后的值 tensor([0., 0., 0.])
    print(out.requires_grad)    # out的requires_grad=True
    print(out)                  # b的值改变了out也变了 tensor([0., 0., 0.])
    print("----------------------------------------------")out.sum().backward()  # 对原来的out求导
    print(a.grad)         # 不会报错,但结果不正确
    
    • 更改分离之后的变量值b,导致原来的张量out的值也跟着改变
    • 但是这种改变对于autograd是没有察觉的,它依然按照求导规则来求导,导致得出完全错误的导数值却浑然不知
    • 它的风险性就是如果我再任意一个地方更改了某一个张量,求导的时候也没有通知我已经在某处更改了,导致得出的导数值完全不正确
  • .detach()测试

    import torcha = torch.tensor([4, 5, 6.], requires_grad=True)
    out = a.sigmoid()
    print(out)
    c = out.detach()
    c.zero_()               # 改变c的值,原来的out也会改变
    print(c.requires_grad)  # detach后requires_grad=False
    print(c)                # 已经归0
    print(out.requires_grad)    # 输出为True
    print(out)
    print("----------------------------------------------")out.sum().backward()  # 对原来的out求导,
    print(a.grad)         # 此时会报错: 梯度计算所需要的张量已经被“原位操作inplace”所更改了# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
    
    • 更改分离之后的变量值c,导致原来的张量out的值也跟着改变
    • 这个时候如果依然按照求导规则来求导,由于out已经更改了,所以不会再继续求导了,而是报错,这样就避免了得出错误的求导结果
应用
  • forward时使用.data或.detach(),不进行梯度计算和梯度跟踪
  • backward时梯度回传,不能使用.detach()或.data,比如loss信息被detach的话就无法进行梯度回传更新参数,会导致模型无法收敛

 


【参考文章】
[1]. .detach和.data的区别和作用
[2]. .detach和.data的区别
[3]. .detach和.data求导时的区别

created by shuaixio, 2024.02.24

这篇关于【pytorch】tensor.detach()和tensor.data的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744703

相关文章

Before和BeforeClass的区别及说明

《Before和BeforeClass的区别及说明》:本文主要介绍Before和BeforeClass的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Before和BeforeClass的区别一个简单的例子当运行这个测试类时总结Before和Befor

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

Java 关键字transient与注解@Transient的区别用途解析

《Java关键字transient与注解@Transient的区别用途解析》在Java中,transient是一个关键字,用于声明一个字段不会被序列化,这篇文章给大家介绍了Java关键字transi... 在Java中,transient 是一个关键字,用于声明一个字段不会被序列化。当一个对象被序列化时,被

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据