【图像处理】均值漂移(mean shift)及深度学习超分辨代码中的mean shift

2024-02-25 06:50

本文主要是介绍【图像处理】均值漂移(mean shift)及深度学习超分辨代码中的mean shift,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

均值漂移(mean shift)

均值漂移是一种聚类算法,常用于特征点聚类、图像分割、对象轮廓检验、目标跟踪等。这里简单直观介绍一下这个算法大概是怎么回事。

基本概念

基本概念可以看下面这个图。左面是一堆像素点特征的分布(其实也不用管他是啥,只要当成一堆点就好了),我们可以看到这堆点有的地方密集,有的地方稀疏。把点的密度分布可视化之后就是右边这个图,大概可以理解为点的密度函数三维可视化。这样就可以看到,会存在几个极值点,也就是红色的点。
好,看到这里你其实就已经理解这个算法的一大半了。
这个算法的操作直观来讲就是,你每拿出一个点来,就把它移动到离它最近的一个极值点。(如图白色点所示,白色点是初始位置,这个点最终应该移动到右上角最高的那个红色点)。
也就是在图中任意一个点,它的类别与密度函数中离它最近的一个极大值点相同。
在这里插入图片描述
做完的结果大概是这样:
在这里插入图片描述

操作过程

讲完基本概念,我们来看如何找到某个点离拿个极大值点最近。操作过程就解释了为什么这个算法叫均值漂移。

  1. 首先找到一个你要聚类的点,如图红色点所示,我们称作sample pixel。
  2. 接着你需要一个window width,也就是你需要一个范围值,这个值就是这个算法很重要的一个参数。找到width范围内的所有点,如图蓝色圈所示。
  3. 接着计算出圈内所有点的均值。均值计算方法可以是直接平均,也可以是加权平均(这个不影响理解)。均值点如图绿色点所示。
  4. 接着将sample pixel移到绿色点,作为新的sample pixel点,
    在这里插入图片描述
  5. 接着以新的点为起始点,重复上述操作,直到sample pixel点和均值点重合或者距离小于某个值,就停止操作,认为这个点归属到了它应该属于的类别。在这里插入图片描述

这是英文版的算法过程,和我讲的意思大概差不多,感兴趣的朋友可以看看。
在这里插入图片描述

均值漂移用于图像分割

对于均值漂移,我们需要给定w,也就是上面讲的蓝色圈圈的范围。
在这里插入图片描述

参考视频

图片来源于这个视频,讲的很不错。感兴趣的朋友可以去看看。https://www.youtube.com/watch?v=PCNz_zttmtA

深度学习超分辨代码中的mean shift

最近在看RCAN的代码,结果点开就懵逼了,里面来了一个meanshift,了解完meanshift感觉它代码干的也不是这事情啊…
RCAN这部分代码大概长这样。

class MeanShift(nn.Conv2d):def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):super(MeanShift, self).__init__(3, 3, kernel_size=1)std = torch.Tensor(rgb_std)self.weight.data = torch.eye(3).view(3, 3, 1, 1) # 第一维为输出通道,第二维为输入通道self.weight.data.div_(std.view(3, 1, 1, 1)) # torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)self.bias.data.div_(std) # sign * rgb_range * torch.Tensor(rgb_mean) / std# (w*x+b)/stdself.requires_grad = False
# parameter of DIV2K
rgb_mean = (0.4488, 0.4371, 0.4040)
rgb_std = (1.0, 1.0, 1.0)
sub_mean = MeanShift(255, rgb_mean, rgb_std)
add_mean = MeanShift(255, rgb_mean, rgb_std, sign=1)

解释

这个其实是一个图像预处理过程。这个过程是将数据集中的每个样本都减去数据集的均值。(训练集,测试集肯定不能混进来算)

原因: 我们默认自然图像是一类平稳的数据分布(即数据每一维的统计都服从相同分布),在每个样本上减去数据的统计平均值可以凸显出个体差异。

参考博客: https://www.pythonf.cn/read/149532

指导老师

徐放、周鹏程、肖彦洋
对生物医学图像感兴趣的朋友欢迎了解 中国科学院深圳先进技术研究院脑信息中心。
实验室主页: http://icbi.siat.ac.cn/xu-lab/

这篇关于【图像处理】均值漂移(mean shift)及深度学习超分辨代码中的mean shift的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744695

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim