【大厂AI课学习笔记NO.52】2.3深度学习开发任务实例(5)需求采集考虑维度

本文主要是介绍【大厂AI课学习笔记NO.52】2.3深度学习开发任务实例(5)需求采集考虑维度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天来学习,怎么做需求分析,如何明确数据采集需求。

我把自己考试通过的学习笔记,都分享到这里了,另外还有一个比较全的思维脑图,我导出为JPG文件了。下载地址在这里:https://download.csdn.net/download/giszz/88868909

本系列都是基于腾讯人工智能AI课的内容,学习笔记,分享给大家,需要更看全面任务的,去腾讯云官网看原文。

详细见下表:

需求采集维度示例
待确认      说明确认结果

赛道样式

明确赛道样式,看是否有和标志类似的图案

使用场地与光照情况

明确模型使用场景与光照情况

  • 室内
  • 侧光,背光,面向光;
  • 信号灯的影响,都会有;

明确交通标志倾斜角度范围

需要检测的交通标志的俯仰角(pitch)、偏航角(yaw)、翻滚角(roll)

这里要有空间想象力,就是注意一点,不是以地面作为xy平面坐标,而是以这个标志牌为平面,再想象出一个z轴,就清晰了。

如上图,x为轴——俯仰角

y为轴——偏航角

z为轴——翻滚角

明确需要检测的交通标志包含哪些

明确需要检测的交通标志包含哪些;1.需要详细列举所有要被检测的交通标志,未被列举的标志不会被识别;2.交通标志的数量越多采集工作量越大;

检测框覆盖范围

需要明确范围细节,如:1.是否包含杆体2.边缘出框情况等等

1.对于交通标志牌子,标注范围是交通标志牌所处范围即可;

2.对于交通信号灯,标注范围是灯亮的区域;

3.对于行人,标注范围是整个行人范围;

4.对于边缘出框的场景,如果出框范围不超过50%,也应当予以检测(如图 2最左侧和最右侧的标志应当能够检出);

检出框分类

是否要对每个框体单独检出

不需要,只需要输出对应检测框即可

需要检测的交通标志的最小框

需要检测的交通标志的最小框最小框越小,运算量越大,执行效率越低;同时,太小的检测框容易使标注误差变大

玩具车速度较快,需要检测到距离车2米的标志,为后续的小车操控预留时间。

对图片模糊程度的要求

实际操作中摄像头模糊效果容忍程度怎样

玩具车摄像头帧率较高,且有处理算法,糊程度实际测试下来最大模糊程度如图

设备色差情况

是否存在设备色差

摄像头较好,无需考虑摄像头色差,但是在部分场景下可能产生由环境光引起的色域变化和噪点,如图

把上面这个表格理解透彻,基本就知道计算机视觉的需求采集,要考虑哪些内容了。

延伸学习:


在计算机视觉中进行需求采集时,需要考虑的维度和注意事项较多。以下是一些主要的维度和注意事项,以及相应的解决思路:

一、考虑的维度:

  1. 应用场景:明确计算机视觉系统的应用场景,如安防监控、自动驾驶、医疗诊断等,有助于确定所需的数据类型和处理方式。
  2. 数据类型:根据应用场景,确定需要采集的数据类型,如图像、视频、深度信息等。
  3. 数据量:评估所需的数据量,以确保训练出的模型具有足够的泛化能力。
  4. 数据质量:关注数据的清晰度、准确性、完整性和多样性,以提高模型的性能。
  5. 实时性要求:对于需要实时处理的应用场景,应关注算法的运算速度和效率。

二、公认的注意事项:

  1. 数据隐私和安全:在采集和处理数据时,应遵守相关法律法规,确保用户隐私和数据安全。
  2. 数据标注准确性:对于需要人工标注的数据集,应确保标注的准确性和一致性,以提高模型的训练效果。
  3. 数据偏差和不平衡问题:注意数据集中可能存在的偏差和不平衡问题,如类别不均衡、场景偏差等,这些问题可能导致模型在特定情况下的性能下降。

三、解决思路:

  1. 针对应用场景和数据类型,选择合适的采集设备和方案,确保数据的准确性和完整性。
  2. 对于数据量需求,可以通过数据增强、迁移学习等技术来扩充数据集,提高模型的泛化能力。
  3. 关注数据质量,采用图像预处理、去噪等技术改善图像质量,提高模型的性能。
  4. 针对实时性要求,优化算法和计算资源,提高处理速度。
  5. 遵守相关法律法规,加强数据加密和访问控制,确保数据隐私和安全。
  6. 建立完善的数据标注流程和质量控制机制,提高数据标注的准确性。
  7. 采用采样策略、数据扩充等技术解决数据偏差和不平衡问题,提高模型在各种情况下的性能。

总之,在计算机视觉中进行需求采集时,需要全面考虑应用场景、数据类型、数据量、数据质量和实时性要求等维度,并关注数据隐私、安全、标注准确性以及偏差和不平衡等问题。通过选择合适的采集方案、优化算法和计算资源以及加强质量控制等措施,可以有效地解决这些问题,提高计算机视觉系统的性能和可靠性。

这篇关于【大厂AI课学习笔记NO.52】2.3深度学习开发任务实例(5)需求采集考虑维度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744097

相关文章

Python38个游戏开发库整理汇总

《Python38个游戏开发库整理汇总》文章介绍了多种Python游戏开发库,涵盖2D/3D游戏开发、多人游戏框架及视觉小说引擎,适合不同需求的开发者入门,强调跨平台支持与易用性,并鼓励读者交流反馈以... 目录PyGameCocos2dPySoyPyOgrepygletPanda3DBlenderFife

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束