LangChain Agent v0.2.0简明教程 (上)

2024-02-25 01:04

本文主要是介绍LangChain Agent v0.2.0简明教程 (上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

快速入门指南 – LangChain中文网
langchain源码剖析系列课程
九天玩转Langchain!

    • 1. LangChain是什么
    • 2. LangChain Expression Language (LCEL)
        • Runnable 接口
    • 3. Model I/O
        • 3.1 Prompt Templates
        • 3.2 Language Model
        • 3.3 Output Parsers
    • Use case(Q&A with RAG)

1. LangChain是什么

LangChain是一个基于LLM开发应用程序的框架,把调用LLM的过程组成一条链的形式,具体要执行哪些函数是由LLM的推理结果决定的。(区别于传统程序是写死的)同时LangChain也是一个丰富的工具生态系统的一部分,我们可以在此框架集成并在其之上构建自己的Agent。

在这里插入图片描述

LangChain的模块组成Model I/O(与语言模型进行接口)、Retriever(与特定于应用程序的数据进行接口)、Memory(在Pipeline运行期间保持记忆状态)、Chain(构建调用序列链条)、Agent(让管道根据高级指令选择使用哪些工具)、Callback(记录和流式传输任何管道的中间步骤)
在这里插入图片描述

在这里插入图片描述

快速安装:

pip install langchain

2. LangChain Expression Language (LCEL)

LangChain应用程序的核心构建模块是LLMChain。它结合了三个方面:

  • LLM: 语言模型是核心推理引擎。要使用LangChain,您需要了解不同类型的语言模型以及如何使用它们。
  • Prompt Templates: 提供语言模型的指令。这控制了语言模型的输出,因此了解如何构建提示和不同的提示策略至关重要。
  • Output Parsers: 将LLM的原始响应转换为更易处理的格式,使得在下游使用输出变得容易。

每个Langchain组件都是LCEL对象,我们可以使用LangChain 表达式语句(LCEL)轻松的将各个组件链接在一起,如下实现prompt + model + output parser的chain = prompt | llm | output_parser,其中| 符号可以实现将数据从一个组件提供的输出,输入到下一个组件中:

from langchain_community.llms import vllm   # this LLM class can be everyone
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParserprompt = ChatPromptTemplate.from_messages([("system", "You are world class technical documentation writer."),("user", "{input}")
])llm = vllm.VLLM(model="/data1/huggingface/LLM/Mistral-7B-Instruct-v0.2")output_parser = StrOutputParser()chain = prompt | llm | output_parserprint(chain.invoke({"input": "how can langsmith help with testing?"}))

接下来仔细看一些下着三个组件:

prompt是一个 BasePromptTemplate,这意味着它接受模板变量的字典并生成 PromptValuePromptValue是完整提示的包装器,可以传递给 LLM (将字符串作为输入)或ChatModel(将一系列消息作为输入)。它可以与任何一种语言模型类型一起使用,因为它定义了生成BaseMessages 和生成字符串的逻辑。

prompt_value = prompt.invoke({"input": "how can langsmith help with testing?"})

打印出来可以看到,prompt_value 是一个ChatPromptValue对象,里面的message是一个list,包含不同角色message的对话信息

ChatPromptValue(messages=[SystemMessage(content='You are world class technical documentation writer.'), HumanMessage(content='how can langsmith help with testing?')])

如果model为 ChatModel,这意味着它将输出 a BaseMessage。而如果我们的model是 LLM,它将输出一个字符串

最后,我们将model输出传递给output_parser,这意味着 BaseOutputParser它需要字符串或 BaseMessage 作为输入。StrOutputParser是将任何输入转换为字符串。

LCEL 可以轻松地从基本组件构建复杂的链条。它通过提供以下功能来实现此目的: 每个 LCEL 对象都实现该Runnable接口,该接口定义了一组通用的调用方法invokebatchstreamainvoke、 …)。这使得 LCEL 对象链也可以自动支持这些调用,大大简化了调用方式。也就是说,每个 LCEL 对象的chain 本身就是一个 LCEL 对象。

而且每个组件都内置了与 LangSmith 的集成。如果我们设置以下两个环境变量,所有链跟踪都会记录到 LangSmith。

import os
os.environ["LANGCHAIN_API_KEY"] = "..."
os.environ["LANGCHAIN_TRACING_V2"] = "true"
Runnable 接口

标准接口包括:
stream:流回响应块(流式调用)
invoke:在输入上调用链(单次调用)
batch:在输入列表上调用链(批调用)
这些也有相应的异步方法:
astream:异步流回响应块
ainvoke:在输入异步上调用链
abatch:在输入列表上调用异步链
astream_log:除了最终响应之外,还实时流回发生的中间步骤
astream_events:链中发生的betalangchain-core流事件( 0.1.14 中引入)

各种组件的输入输出格式:
在这里插入图片描述

3. Model I/O

首先我们从最基本面的部分讲起,Model I/O 指的是和LLM直接进行交互的过程。

在这里插入图片描述
在langchain的Model I/O这一流程中,LangChain抽象的组件主要有三个:

  • Language models: 语言模型是核心推理引擎。要使用LangChain,您需要了解不同类型的语言模型以及如何使用它们。
  • Prompt Templates: 提供语言模型的指令。这控制了语言模型的输出,因此了解如何构建提示和不同的提示策略至关重要。
  • Output Parsers: 将LLM的原始响应转换为更易处理的格式,使得在下游使用输出变得容易。

下面我们展开介绍一下.

3.1 Prompt Templates

Prompt指用户的一系列指令和输入,是决定Language Model输出内容的唯一输入,主要用于帮助模型理解上下文,并生成相关和连贯的输出,如回答问题、拓写句子和总结问题。在LangChain中的相关组件主要有Prompt TemplateExample selectors,以及后面会提到的辅助/补充Prompt的一些其它组件

  • Prompt Template: 预定义的一系列指令输入参数的prompt模版(默认使用str.fromat格式化),支持更加灵活的输入,如支持output instruction(输出格式指令), partial input(提前指定部分输入参数), examples(输入输出示例)等;LangChain提供了大量方法来创建Prompt Template,有了这一层组件就可以在不同Language Model和不同Chain下大量复用Prompt Template了,Prompt Template中也会有下面将提到的Example selectors, Output Parser的参与
  • Example selectors: 在很多场景下,单纯的instruction + input的prompt不足以让LLM完成高质量的推理回答,这时候我们就还需要为prompt补充一些针对具体问题的示例(in-context learning),LangChain将这一功能抽象为了Example selectors这一组件,我们可以基于关键字,相似度(通常使用MMR/cosine similarity/ngram来计算相似度, 在后面的向量数据库章节中会提到)。为了让最终的prompt不超过Language Model的token上限(各个模型的token上限见下表),LangChain还提供了LengthBasedExampleSelector,根据长度来限制example数量,对于较长的输入,它会选择包含较

这篇关于LangChain Agent v0.2.0简明教程 (上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743955

相关文章

ubuntu20.0.4系统中安装Anaconda的超详细图文教程

《ubuntu20.0.4系统中安装Anaconda的超详细图文教程》:本文主要介绍了在Ubuntu系统中如何下载和安装Anaconda,提供了两种方法,详细内容请阅读本文,希望能对你有所帮助... 本文介绍了在Ubuntu系统中如何下载和安装Anaconda。提供了两种方法,包括通过网页手动下载和使用wg

如何在Ubuntu上安装NVIDIA显卡驱动? Ubuntu安装英伟达显卡驱动教程

《如何在Ubuntu上安装NVIDIA显卡驱动?Ubuntu安装英伟达显卡驱动教程》Windows系统不同,Linux系统通常不会自动安装专有显卡驱动,今天我们就来看看Ubuntu系统安装英伟达显卡... 对于使用NVIDIA显卡的Ubuntu用户来说,正确安装显卡驱动是获得最佳图形性能的关键。与Windo

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas