【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化

2024-02-24 23:10

本文主要是介绍【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论恒叨系列

【理论恒叨】【立体匹配系列】经典SGM:(1)匹配代价计算之互信息(MI)
【理论恒叨】【立体匹配系列】经典SGM:(2)匹配代价计算之Census变换
【理论恒叨】【立体匹配系列】经典SGM:(3)代价聚合(Cost Aggregation)
【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化

【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化

    • 视差计算
    • 视差优化
      • 剔除错误匹配
      • 提高视差精度
      • 抑制噪声


视差计算


  在SGM算法中,视差计算采用赢家通吃(WTA)算法,每个像素选择最小聚合代价值所对应的视差值作为最终视差,视差计算的结果是和左影像相同尺寸的视差图,存储每个像素的视差值,在影像内外参数已知的情况下,视差图可以转换为深度图,表示每个像素在空间中的位置,图1为双目立体像对的真实视差图示意图。

图1 双目立体像对及左影像真实视差图示意图

  如图2所示,某个像素的所有视差下的代价值中,选择最小代价值所对应的视差作为最优视差。这一步非常简单,这意味着聚合代价矩阵S的值必须能够准确的反映像素之间的相关性,也表明上一步代价聚合步骤是立体匹配中极为关键的步骤,直接决定了算法的准确性。

图2 赢家通吃算法示意图

视差优化


  视差优化的目的是为了对通过视差计算得到的视差图进行进一步的优化处理,剔除错误视差,提高视差精度,使视差值更可靠、更精确。

剔除错误匹配

  错误匹配直观的反应是聚合后某些像素在真实视差位置的代价值并非最小值,有很多因素能够造成这一现象的产生,如影像噪声、遮挡、弱纹理或重复纹理,以及算法的局限性。实际上目前还没有哪个算法能够完美的处理以上所有问题,所以错误匹配的剔除对所有算法都是有必要的。目前最常用的错误匹配剔除方法是左右一致性法(L-R Check),它基于视差的唯一性约束,即每个像素最多只存在一个正确视差。具体步骤是将左右影像互换位置,即左影像成为右影像,右影像成为左影像,再做一次立体匹配,得到另一张视差图,因为视差图中每个值所反映的是两个像素之间的对应关系,所以依据视差的唯一性约束,通过左影像的视差图,找到每个像素在右影像的同名点像素及该像素对应的视差值,这两个视差值之间的差值若小于一定阈值(一般为1个像素),则满足唯一性约束被保留,反之则不满足唯一性约束而被剔除。一致性检查的公式如式1所示:

式1 LR-Check

图3 一致性检查示意图

  除一致性检查之外,剔除小连连通区(Remove Peaks)、唯一性检测(Uniqueness Check)也是常用的剔除错误视差的方法,可以结合使用。

  剔除小连连通区(Remove Peaks)是指剔除掉视差图中连通的极小块区域,同一个连通区内的视差与邻域视差之差小于设定阈值(一般为1)。

  唯一性检测(Uniqueness Check)是指对每个像素计算最小代价和次最小代价的值,若两者相对差小于一定阈值,则被剔除。

if ((SecMin-Min)/Min < T) {disparity = invalid;
}

提高视差精度

  提高视差精度采用子像素优化技术,因为视差计算得到的视差图是整像素精度,在很多应用中都无法满足精度要求,SGM采用二次曲线内插的方法获得子像素精度,对最优视差的代价值以及前后两个视差的代价值进行二次曲线拟合,曲线的极值点所对应的视差值即为新的子像素视差值,如图4所示。

图4 二次曲线拟合计算子像素视差

抑制噪声

  为了抑制噪声,小窗口(通常为3x3)的中值滤波(Median Filter)是常用的算法。双边滤波(Bilateral Filter)也比较常用,能够较好的保持边缘精度,效率较中值滤波低。

码上教学系列

【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(1)框架与类设计
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(2)代价计算
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(3)代价聚合
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(4)代价聚合2
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(5)视差优化
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(6)视差填充
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(7)弱纹理优化

完整代码已发布于Github开源项目:Github/SemiGlobalMatching,欢迎免费下载

博主简介:
Ethan Li 李迎松
武汉大学 摄影测量与遥感专业博士

主方向立体匹配、三维重建

2019年获测绘科技进步一等奖(省部级)

爱三维,爱分享,爱开源
GitHub: https://github.com/ethan-li-coding
邮箱:ethan.li.whu@gmail.com

个人微信:

欢迎交流!

喜欢博主的文章不妨关注一下博主的博客,感谢!
博客主页:https://blog.csdn.net/rs_lys

这篇关于【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743670

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML