【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化

2024-02-24 23:10

本文主要是介绍【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论恒叨系列

【理论恒叨】【立体匹配系列】经典SGM:(1)匹配代价计算之互信息(MI)
【理论恒叨】【立体匹配系列】经典SGM:(2)匹配代价计算之Census变换
【理论恒叨】【立体匹配系列】经典SGM:(3)代价聚合(Cost Aggregation)
【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化

【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化

    • 视差计算
    • 视差优化
      • 剔除错误匹配
      • 提高视差精度
      • 抑制噪声


视差计算


  在SGM算法中,视差计算采用赢家通吃(WTA)算法,每个像素选择最小聚合代价值所对应的视差值作为最终视差,视差计算的结果是和左影像相同尺寸的视差图,存储每个像素的视差值,在影像内外参数已知的情况下,视差图可以转换为深度图,表示每个像素在空间中的位置,图1为双目立体像对的真实视差图示意图。

图1 双目立体像对及左影像真实视差图示意图

  如图2所示,某个像素的所有视差下的代价值中,选择最小代价值所对应的视差作为最优视差。这一步非常简单,这意味着聚合代价矩阵S的值必须能够准确的反映像素之间的相关性,也表明上一步代价聚合步骤是立体匹配中极为关键的步骤,直接决定了算法的准确性。

图2 赢家通吃算法示意图

视差优化


  视差优化的目的是为了对通过视差计算得到的视差图进行进一步的优化处理,剔除错误视差,提高视差精度,使视差值更可靠、更精确。

剔除错误匹配

  错误匹配直观的反应是聚合后某些像素在真实视差位置的代价值并非最小值,有很多因素能够造成这一现象的产生,如影像噪声、遮挡、弱纹理或重复纹理,以及算法的局限性。实际上目前还没有哪个算法能够完美的处理以上所有问题,所以错误匹配的剔除对所有算法都是有必要的。目前最常用的错误匹配剔除方法是左右一致性法(L-R Check),它基于视差的唯一性约束,即每个像素最多只存在一个正确视差。具体步骤是将左右影像互换位置,即左影像成为右影像,右影像成为左影像,再做一次立体匹配,得到另一张视差图,因为视差图中每个值所反映的是两个像素之间的对应关系,所以依据视差的唯一性约束,通过左影像的视差图,找到每个像素在右影像的同名点像素及该像素对应的视差值,这两个视差值之间的差值若小于一定阈值(一般为1个像素),则满足唯一性约束被保留,反之则不满足唯一性约束而被剔除。一致性检查的公式如式1所示:

式1 LR-Check

图3 一致性检查示意图

  除一致性检查之外,剔除小连连通区(Remove Peaks)、唯一性检测(Uniqueness Check)也是常用的剔除错误视差的方法,可以结合使用。

  剔除小连连通区(Remove Peaks)是指剔除掉视差图中连通的极小块区域,同一个连通区内的视差与邻域视差之差小于设定阈值(一般为1)。

  唯一性检测(Uniqueness Check)是指对每个像素计算最小代价和次最小代价的值,若两者相对差小于一定阈值,则被剔除。

if ((SecMin-Min)/Min < T) {disparity = invalid;
}

提高视差精度

  提高视差精度采用子像素优化技术,因为视差计算得到的视差图是整像素精度,在很多应用中都无法满足精度要求,SGM采用二次曲线内插的方法获得子像素精度,对最优视差的代价值以及前后两个视差的代价值进行二次曲线拟合,曲线的极值点所对应的视差值即为新的子像素视差值,如图4所示。

图4 二次曲线拟合计算子像素视差

抑制噪声

  为了抑制噪声,小窗口(通常为3x3)的中值滤波(Median Filter)是常用的算法。双边滤波(Bilateral Filter)也比较常用,能够较好的保持边缘精度,效率较中值滤波低。

码上教学系列

【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(1)框架与类设计
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(2)代价计算
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(3)代价聚合
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(4)代价聚合2
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(5)视差优化
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(6)视差填充
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(7)弱纹理优化

完整代码已发布于Github开源项目:Github/SemiGlobalMatching,欢迎免费下载

博主简介:
Ethan Li 李迎松
武汉大学 摄影测量与遥感专业博士

主方向立体匹配、三维重建

2019年获测绘科技进步一等奖(省部级)

爱三维,爱分享,爱开源
GitHub: https://github.com/ethan-li-coding
邮箱:ethan.li.whu@gmail.com

个人微信:

欢迎交流!

喜欢博主的文章不妨关注一下博主的博客,感谢!
博客主页:https://blog.csdn.net/rs_lys

这篇关于【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743670

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel