C++惯用法之CRTP(奇异递归模板模式)

2024-02-24 23:04

本文主要是介绍C++惯用法之CRTP(奇异递归模板模式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关系列文章

C++惯用法之Pimpl

C++之数据转换(全)

目录

1.介绍

2.CRTP的使用场景

2.1.实现静态多态

2.2.代码复用和扩展性

3.总结


1.介绍

        CRTP的全称是Curiously Recurring Template Pattern,即奇异递归模板模式,简称CRTP。CRTP是一种特殊的模板技术和使用方式,是C++模板编程中的一种惯用法。基本特征表现为:基类是一个模板类;派生类在继承该基类时,将派生类自身作为模板参数传递给基类。下面用网上的实例来说明为什么要用CRTP? 比如我要实现一个数学库,如果使用运行时多态来实现向量类Vector,那么代码结构大致如下:

template<typename Type, unsigned Len>
struct VectorBase{virtual void someFunction(){...}...
};
struct Vector3: VectorBase<float, 3>{virtual void someFunction() override {...}
};

         需要注意的是,运行时多态是有开销的,熟悉c++虚函数的人应该就能明白,如果我调用一个虚函数,需要查询对象头部的虚函数表来得到实际函数地址,这个寻址的开销对于一个数学库而言是非常巨大的。而如果使用静态多态,则可以使用如下的代码来实现:

template <typename ChildType> struct VectorBase {ChildType &underlying() { return static_cast<ChildType &>(*this); }inline ChildType &operator+=(const ChildType &rhs) {this->underlying() = this->underlying() + rhs;return this->underlying();}
};
struct Vec3f : public VectorBase<Vec3f> {float x{}, y{}, z{};Vec3f() = default;Vec3f(float x, float y, float z) : x(x), y(y), z(z) {}
};inline Vec3f operator+(const Vec3f &lhs, const Vec3f &rhs) {Vec3f result;result.x = lhs.x + rhs.x;result.y = lhs.y + rhs.y;result.z = lhs.z + rhs.z;return result;
}

        可以看到,静态多态虽然导致代码复用度相较于运行时多态降低了很多,但是相较于完全手写,我们可以利用子类实现的operator+来通过CRTP自动添加operator+=,相当于是做到了运行效率与开发效率的相对平衡。 

        VectorBase是模版基类,派生类Vec3f 继承自VectorBase,并以自身作为模板参数传递给基类, 在基类内部,通过使用static_cast,将this指针转换为模板参数类型T的指针,然后调用类型T的方法imp。static_cast的用法可参考一下博客。

C++之数据转换(全)_c++数据类型转换-CSDN博客

2.CRTP的使用场景

2.1.实现静态多态

C ++支持动态和静态多态。

  • 动态多态性:在这种类型的多态性中,在编译时不知道对象的类型(可能基于用户输入等),因此编译器添加了额外的数据结构来支持这一点。 该标准并未规定应如何实施。C++通过虚函数表实现多态,但是虚函数会影响类的内存布局,并且虚函数的调用会增加运行时的开销。
  • 静态多态性:在这种类型中,对象的类型在编译时本身是已知的,因此实际上无需在数据结构中保存额外的信息。 但是如前所述,我们需要在编译时知道对象的类型。

CRTP 可以实现静态多态,但本质上 CRTP 中的多个派生类并不是同一个基类,因此严格意义上不能叫多态。示例如下:

template<typename T>
class base
{
public:virtual ~base(){}void interface() { static_cast<T*>(this)->impl(); }void impl() { cout << "base impl... " << endl; }
};class derived1 : public base<derived1>
{
public:void impl(){ cout << "derived1 impl... " << endl; }
};class derived2 : public base<derived2>
{
public:void impl() { cout << "derived2 impl..." << endl; }
};template<typename T>
void testDemo(T & base)
{base.interface();
}int main()
{derived1 a1;derived2 a2;testDemo(a1);  //输出:derived1 impl... testDemo(a2);  //输出:derived2 impl... return 0;
}

2.2.代码复用和扩展性

使用 CRTP 可以把重复性的代码抽象到基类中,减少代码冗余。示例代码如下:

template<typename T>
class base
{
public:virtual ~baseDemo(){}void getType() { T& t = static_cast<T&>(*this);cout << typeid(t).name() << endl;} 
};class derived1 : public base<derived1>
{
};class derived2 : public base<derived2>
{
};int main()
{derived1  a1;derived2  a2;a1.getType(); //输出:class derived1a2.getType(); //输出:class derived2return 0;
}

        可以看到,在基类中getType函数中能够获取到派生于base所有类的类型信息,相比于虚函数的方式减少了代码。上面的代码在getType函数不变的情况下,可以任意编写base的扩展类,提高了代码的可重用性和灵活性。

        我们再看一个示例:多态拷贝构造(Polymorphic copy construction)

// Base class has a pure virtual function for cloning
class Shape {
public:virtual ~Shape() {};virtual Shape *clone() const = 0;
};
// This CRTP class implements clone() for Derived
template <typename Derived>
class Shape_CRTP : public Shape {
public:virtual Shape *clone() const {return new Derived(static_cast<Derived const&>(*this));}
};// Nice macro which ensures correct CRTP usage
#define Derive_Shape_CRTP(Type) class Type: public Shape_CRTP<Type>// Every derived class inherits from Shape_CRTP instead of Shape
Derive_Shape_CRTP(Square) {};
Derive_Shape_CRTP(Circle) {};

         传统的实现方式是,基类有个虚拟clone函数,每个继承类实现自己的clone函数功能。依靠CRTP技术,只定义一个就够了,大家通用,一样减少了冗余代码,提高了代码的复用性。

3.总结

  • 优点:省去动态绑定、查询虚函数表带来的开销。通过CRTP,基类可以获得到派生类的类型,提供各种操作,比普通的继承更加灵活。但CRTP基类并不会单独使用,只是作为一个模板的功能。
  • 缺点:使用CRTP需要编写更多的模板代码,增加了代码的复杂度,对于不熟悉模板编程的开发者来说可能会带来一定的学习成本。

这篇关于C++惯用法之CRTP(奇异递归模板模式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743647

相关文章

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A