C++惯用法之CRTP(奇异递归模板模式)

2024-02-24 23:04

本文主要是介绍C++惯用法之CRTP(奇异递归模板模式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关系列文章

C++惯用法之Pimpl

C++之数据转换(全)

目录

1.介绍

2.CRTP的使用场景

2.1.实现静态多态

2.2.代码复用和扩展性

3.总结


1.介绍

        CRTP的全称是Curiously Recurring Template Pattern,即奇异递归模板模式,简称CRTP。CRTP是一种特殊的模板技术和使用方式,是C++模板编程中的一种惯用法。基本特征表现为:基类是一个模板类;派生类在继承该基类时,将派生类自身作为模板参数传递给基类。下面用网上的实例来说明为什么要用CRTP? 比如我要实现一个数学库,如果使用运行时多态来实现向量类Vector,那么代码结构大致如下:

template<typename Type, unsigned Len>
struct VectorBase{virtual void someFunction(){...}...
};
struct Vector3: VectorBase<float, 3>{virtual void someFunction() override {...}
};

         需要注意的是,运行时多态是有开销的,熟悉c++虚函数的人应该就能明白,如果我调用一个虚函数,需要查询对象头部的虚函数表来得到实际函数地址,这个寻址的开销对于一个数学库而言是非常巨大的。而如果使用静态多态,则可以使用如下的代码来实现:

template <typename ChildType> struct VectorBase {ChildType &underlying() { return static_cast<ChildType &>(*this); }inline ChildType &operator+=(const ChildType &rhs) {this->underlying() = this->underlying() + rhs;return this->underlying();}
};
struct Vec3f : public VectorBase<Vec3f> {float x{}, y{}, z{};Vec3f() = default;Vec3f(float x, float y, float z) : x(x), y(y), z(z) {}
};inline Vec3f operator+(const Vec3f &lhs, const Vec3f &rhs) {Vec3f result;result.x = lhs.x + rhs.x;result.y = lhs.y + rhs.y;result.z = lhs.z + rhs.z;return result;
}

        可以看到,静态多态虽然导致代码复用度相较于运行时多态降低了很多,但是相较于完全手写,我们可以利用子类实现的operator+来通过CRTP自动添加operator+=,相当于是做到了运行效率与开发效率的相对平衡。 

        VectorBase是模版基类,派生类Vec3f 继承自VectorBase,并以自身作为模板参数传递给基类, 在基类内部,通过使用static_cast,将this指针转换为模板参数类型T的指针,然后调用类型T的方法imp。static_cast的用法可参考一下博客。

C++之数据转换(全)_c++数据类型转换-CSDN博客

2.CRTP的使用场景

2.1.实现静态多态

C ++支持动态和静态多态。

  • 动态多态性:在这种类型的多态性中,在编译时不知道对象的类型(可能基于用户输入等),因此编译器添加了额外的数据结构来支持这一点。 该标准并未规定应如何实施。C++通过虚函数表实现多态,但是虚函数会影响类的内存布局,并且虚函数的调用会增加运行时的开销。
  • 静态多态性:在这种类型中,对象的类型在编译时本身是已知的,因此实际上无需在数据结构中保存额外的信息。 但是如前所述,我们需要在编译时知道对象的类型。

CRTP 可以实现静态多态,但本质上 CRTP 中的多个派生类并不是同一个基类,因此严格意义上不能叫多态。示例如下:

template<typename T>
class base
{
public:virtual ~base(){}void interface() { static_cast<T*>(this)->impl(); }void impl() { cout << "base impl... " << endl; }
};class derived1 : public base<derived1>
{
public:void impl(){ cout << "derived1 impl... " << endl; }
};class derived2 : public base<derived2>
{
public:void impl() { cout << "derived2 impl..." << endl; }
};template<typename T>
void testDemo(T & base)
{base.interface();
}int main()
{derived1 a1;derived2 a2;testDemo(a1);  //输出:derived1 impl... testDemo(a2);  //输出:derived2 impl... return 0;
}

2.2.代码复用和扩展性

使用 CRTP 可以把重复性的代码抽象到基类中,减少代码冗余。示例代码如下:

template<typename T>
class base
{
public:virtual ~baseDemo(){}void getType() { T& t = static_cast<T&>(*this);cout << typeid(t).name() << endl;} 
};class derived1 : public base<derived1>
{
};class derived2 : public base<derived2>
{
};int main()
{derived1  a1;derived2  a2;a1.getType(); //输出:class derived1a2.getType(); //输出:class derived2return 0;
}

        可以看到,在基类中getType函数中能够获取到派生于base所有类的类型信息,相比于虚函数的方式减少了代码。上面的代码在getType函数不变的情况下,可以任意编写base的扩展类,提高了代码的可重用性和灵活性。

        我们再看一个示例:多态拷贝构造(Polymorphic copy construction)

// Base class has a pure virtual function for cloning
class Shape {
public:virtual ~Shape() {};virtual Shape *clone() const = 0;
};
// This CRTP class implements clone() for Derived
template <typename Derived>
class Shape_CRTP : public Shape {
public:virtual Shape *clone() const {return new Derived(static_cast<Derived const&>(*this));}
};// Nice macro which ensures correct CRTP usage
#define Derive_Shape_CRTP(Type) class Type: public Shape_CRTP<Type>// Every derived class inherits from Shape_CRTP instead of Shape
Derive_Shape_CRTP(Square) {};
Derive_Shape_CRTP(Circle) {};

         传统的实现方式是,基类有个虚拟clone函数,每个继承类实现自己的clone函数功能。依靠CRTP技术,只定义一个就够了,大家通用,一样减少了冗余代码,提高了代码的复用性。

3.总结

  • 优点:省去动态绑定、查询虚函数表带来的开销。通过CRTP,基类可以获得到派生类的类型,提供各种操作,比普通的继承更加灵活。但CRTP基类并不会单独使用,只是作为一个模板的功能。
  • 缺点:使用CRTP需要编写更多的模板代码,增加了代码的复杂度,对于不熟悉模板编程的开发者来说可能会带来一定的学习成本。

这篇关于C++惯用法之CRTP(奇异递归模板模式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743647

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一