使用 ES|QL 优化可观察性:简化 Kubernetes 和 OTel 的 SRE 操作和问题解决

2024-02-24 18:52

本文主要是介绍使用 ES|QL 优化可观察性:简化 Kubernetes 和 OTel 的 SRE 操作和问题解决,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:Bahubali Shetti

作为一名运营工程师(SRE、IT 运营、DevOps),管理技术和数据蔓延是一项持续的挑战。 简单地管理大量高维和高基数数据是令人难以承受的。

作为单一平台,Elastic® 帮助 SRE 将无限的遥测数据(包括指标、日志、跟踪和分析)统一并关联到单一数据存储 — Elasticsearch® 中。 然后,通过应用 Elastic 的高级机器学习 (ML)、AIOps、AI Assistant 和分析的强大功能,你可以打破孤岛并将数据转化为见解。 作为全栈可观测性解决方案,从基础设施监控到日志监控和应用程序性能监控 (APM) 的所有内容都可以在单一、统一的体验中找到。

在 Elastic 8.11 中,Elastic 的新管道查询语言 ES|QL(Elasticsearch 查询语言)现已提供技术预览,它可以转换、丰富和简化数据调查。 在新的查询引擎的支持下,ES|QL 提供了具有并发处理的高级搜索功能,从而提高了速度和效率,而不受数据源和结构的影响。 通过从一个屏幕创建聚合和可视化来加速解决问题,提供迭代、不间断的工作流程。

ES|QL 对于 SRE 的优势

使用 Elastic Observability 的 SRE 可以利用 ES|QL 来分析日志、指标、跟踪和分析数据,使他们能够通过单个查询查明性能瓶颈和系统问题。 在 Elastic Observability 中使用 ES|QL 管理高维和高基数数据时,SRE 具有以下优势:

  • 提高运营效率:通过使用 ES|QL,SRE 可以使用聚合值作为单个查询的阈值来创建更多可操作的通知,这些通知也可以通过 Elastic API 进行管理并集成到 DevOps 流程中。
  • 通过洞察增强分析:ES|QL 可以处理各种可观测数据,包括应用程序、基础设施、业务数据等,无论来源和结构如何。 ES|QL 可以轻松地通过附加字段和上下文丰富数据,从而允许通过单个查询创建仪表板可视化或问题分析。
  • 缩短解决问题的平均时间:ES|QL 与 Elastic Observability 的 AIOps 和 AI Assistant 结合使用,可通过识别趋势、隔离事件和减少误报来提高检测准确性。 这种上下文的改进有助于故障排除以及快速查明和解决问题。

Elastic Observability 中的 ES|QL 不仅增强了 SRE 更有效地管理客户体验、组织收入和 SLO 的能力,而且还通过提供上下文聚合数据来促进与开发人员和 DevOps 的协作。

在本博客中,我们将介绍 SRE 可以利用 ES|QL 的一些关键用例:

  • ES|QL 与 Elastic AI Assistant 集成,使用公共 LLM 和私有数据,增强了 Elastic Observability 中任何地方的分析体验。
  • SRE 可以在单个 ES|QL 查询中分解、分析和可视化来自多个来源和跨任何时间范围的可观察性数据。
  • 可以通过单个 ES|QL 查询轻松创建可操作的警报,从而增强操作。

我将通过展示 SRE 如何解决使用 OpenTelemetry 检测并在 Kubernetes 上运行的应用程序中的问题来完成这些用例。 OpenTelemetry (OTel) 演示位于 Amazon EKS 集群上,并配置了 Elastic Cloud 8.11。

你还可以查看我们的 Elastic Observability ES|QL 演示,该演示演示了可观察性的 ES|QL 功能。

ES|QL 与 AI 助手

作为 SRE,你正在使用 Elastic Observability 监控 OTel 仪表化应用程序,而在 Elastic APM 中,你会注意到 service map 中突出显示的一些问题。

使用 Elastic AI Assistant,你可以轻松要求进行分析,特别是,我们会检查应用程序服务的总体延迟情况。

My APM data is in traces-apm*. What's the average latency per service over the last hour? Use ESQL, the data is mapped to ECS

Elastic AI Assistant 生成一个 ES|QL 查询,我们在 AI Assistant 中运行该查询以获取所有应用程序服务的平均延迟列表。 我们可以很容易地看到前四名是:

  • load generator
  • front-end proxy
  • frontendservice
  • checkoutservice

通过 AI Assistant 中的简单自然语言查询,它生成了单个 ES|QL 查询,帮助列出跨服务的延迟。

注意到多个服务存在问题,我们决定从前端代理(front-end proxy)开始。 当我们研究细节时,我们看到了重大故障,并且通过 Elastic APM 故障关联,很明显前端代理没有正确完成对下游服务的调用。

Discover 中的 ES|QL 洞察力和上下文分析

了解应用程序在 Kubernetes 上运行后,我们会调查 Kubernetes 中是否存在问题。 我们特别想查看是否有任何服务存在问题。

我们在 Elastic Discover 的 ES|QL 中使用以下查询:

from metrics-* | where kubernetes.container.status.last_terminated_reason != "" and kubernetes.namespace == "default" | stats reason_count=count(kubernetes.container.status.last_terminated_reason) by kubernetes.container.name, kubernetes.container.status.last_terminated_reason | where reason_count > 0

ES|QL 帮助分析来自 Kubernetes 的 1,000 个/10,000 个指标事件,并突出显示由于 OOMKilled 而重新启动的两个服务。

当被问及 OOMKilled 时,Elastic AI Assistant 表示 pod 中的容器由于内存不足而被终止。

我们运行另一个 ES|QL 查询来了解电子邮件服务和产品目录服务的内存使用情况。

ES|QL 很容易发现平均内存使用量相当高。

我们现在可以进一步调查这两个服务的日志、指标和 Kubernetes 相关数据。 然而,在继续之前,我们创建一个警报来跟踪大量内存使用情况。

使用 ES|QL 发出可操作的警报

怀疑可能会再次出现的特定问题,我们只需创建一个警报,引入我们刚刚运行的 ES|QL 查询,该查询将跟踪内存利用率超过 50% 的任何服务。

我们修改最后一个查询以查找内存使用率高的任何服务:

FROM metrics*
| WHERE @timestamp >= NOW() - 1 hours
| STATS avg_memory_usage = AVG(kubernetes.pod.memory.usage.limit.pct) BY kubernetes.deployment.name | where avg_memory_usage > .5

通过该查询,我们创建一个简单的警报。 请注意如何将 ES|QL 查询引入警报中。 我们简单地将其与寻呼机职责联系起来。 但我们可以从多个连接器中进行选择,例如 ServiceNow、Opsgenie、电子邮件等。

通过此警报,我们现在可以轻松监控 pod 中内存利用率超过 50% 的任何服务。

使用 ES|QL 充分利用你的数据

在这篇文章中,我们展示了 ES|QL 为分析、操作和减少 MTTR 带来的强大功能。 综上所述,Elastic Observability 中 ES|QL 的三个用例如下:

  • ES|QL 与 Elastic AI Assistant 集成,使用公共 LLM 和私有数据,增强了 Elastic Observability 中任何地方的分析体验。
  • SRE 可以在单个 ES|QL 查询中分解、分析和可视化来自多个来源和跨任何时间范围的可观察性数据。
  • 可以通过单个 ES|QL 查询轻松创建可操作的警报,从而增强操作。

Elastic 邀请 SRE 和开发人员亲身体验这种变革性语言,并开启数据任务的新视野。 今天就在 https://ela.st/free-Trial上尝试一下,现在处于技术预览版。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

原文:Optimizing SRE efficiency and issue resolution with ES|QL in Elastic Observability, OTel, and Kubernetes | Elastic Blog

这篇关于使用 ES|QL 优化可观察性:简化 Kubernetes 和 OTel 的 SRE 操作和问题解决的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743038

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符