7分钟0基础彻底理解常用数据压缩原理---哈夫曼编码

本文主要是介绍7分钟0基础彻底理解常用数据压缩原理---哈夫曼编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

如果你之前没有做过数据压缩,或者想要了解数据压缩的原理,那么这编文章将会帮到你。这编文章将会带你彻底了解哈夫曼编码原理,这种编码方式常用作的图片无损压缩,和ZIP的等压缩存储。

思考,计算机的存储与解析获取

这里有一组数据为1, 3,4,5,6,1,4,3,5. 单位为字节,把他们存起来。那么二进制就是1,11,100,101,110,1,100,11, 101. 但是计算机存储的时候,他们每个数据占8个“格子” ,即为**00000001, 00000011,00000100,00000101,00000110,
00000001,00000100, 00000011,00000101.**真正存储的时候是没有分割区分的,数据都是放在一起的。000000010000001100000100000001010000011000000001000001000000001100000101 。那么是怎么识别获取的数据的呢? 读取的时候,每8个位置作为一个数据读取,如果是int类型,一般都是32位,即每32位作为一个数据。
即为

可见,前缀为00000这部分是无效数据,无疑会浪费了很大一部分空间。这种存储编码被成为定长编码。这是为什么会这样子存储?因为如果不固定长度,计算机就不会知道读的数据是什么。举个例子,1和3放在在一起为111,如果不固定位数,可能识别为3和1(11,1)也可以识别为1和3(1,11),甚至全部读取为一个数字为7(111)

那么有没有一种存储方式可以按需节约来存储呢?答案是

树的知识

我们先回顾下关于树的知识点,方便我们理解下面的内容。

叶子结点

叶子结点是指一个树形结构中,没有任何子结点的节点,也就是说它是树结构的最底层节点

在这里插入图片描述

什么是度?

当前结点的最大的子节点数目。也就是分支的数目。
在这里插入图片描述
如图,A的度为2, B的度为2. 而叶子结点的度为0. 由此可见,二叉树结点的最大的度为2.最小为0.

什么是路径,路径长度

路径: 是指从树中一个节点到另一个节点的分支所构成的路线。
路径长度: 从一个结点到另一个结点所经过的“边”的数量,被我们称为两个结点之间的路径长度。
在这里插入图片描述

例如:A到F的路径长度为2。A到H的路径长度为3

什么是权值

权值就是某个结点存储的数据的值。如下图,H结点存了一个数据是100,那么久叫他的权值为100
在这里插入图片描述

什么是带权路径长度

权路径长度是指根结点到某的结点的路径的长度和该结点的权值相乘的结果。
如上图, 根结点A到H的路径为3, 而H结点的权值为100,那么他的带权路径长度为3*100=300

哈夫曼编码

我们不急着怎么看他的定义,先通过例子去理解。

现在有个一串字母"ACCCCCABDDD",按照下面方式将它进行特殊存储
下面是字符对应二进制表格

字符二进制
A01000001
B01000010
C01000011
D01000100

第一步,将数据进行节约存储。

为了节约数据空间,我们把前面可以理解为多余的部分空间去掉,做个映射表,即为

字符二进制
A1
B10
C11
D100

第二步,统计每一个字符的出现个数

字符出现个数
A1
B2
C5
D3

第三步,按“出现个数”进行排序

字符出现个数
C5
D3
B2
A1

第四步,构建带权值的二叉树

将“出现个数”作为父结点权值(具体规则看下面步骤), 将字符二进制数据作为叶子结点权值,构建二叉树。将权值越大的,距离根节点越近,最大权值带权路径最短,以此例推。(如果忘记的概念,请到上面重复阅读)

(1)首先把最小的两个权值的作为叶子节点 ,出现次数大的在左边, 构建一个二叉树。如下图
在这里插入图片描述

(2)将这个新组成的二叉树他的父节点求权值,将A和B的权值相加,得到 3,如下
在这里插入图片描述

(3)将比A和B最近的数据进行构建新组合二叉树,刚刚好比A和B大的数据是D,将D与A,B的父节点,作为同一层构建二叉树,如下。

在这里插入图片描述

然后继续求顶部根节点的权值,将D的权值与A,B的父节点的权值相加求值。
在这里插入图片描述
依次类推,可以得出整棵树如下

在这里插入图片描述
然后,把除了叶子节点的权值全部改成1.

在这里插入图片描述

最后,叶子节点全部改成0,除B 外,B 改成1

在这里插入图片描述

第五步,制作代号表

把左边节点权值, 我们从顶点触发,把经过的叶子节点带权路径轨迹记录下来。

第一个为: 1 - 0
第二个为: 1 - 1 - 0
第三个为: 1 - 1 - 1 - 0
第四个为: 1 - 1 -1 - 1

由此可以推出

代号字母
10C
110D
1110A
1111B

没错,这时候你已经猜出来,为什么要这么做了。

第六步,存储

有了上面这个表格后,就可以存储和读取了。
字符串为:ACCCCCABDDD
那么按照上面的表格,分布存储为如下
1110 10 10 10 10 10 1110 1111 110 110 110

第七步,读取

我们需要根据这个树,通过轨迹来读取对于的值。
在这里插入图片描述
根节点出发,遇到1右边,遇到0左边
读取这串数据“1110 10 10 10 10 10 1110 1111 110 110 110”,如图
在这里插入图片描述
所以读取第一个值是A,(存储表的的时候是存二进制(1),这里只不过是为了好阅读)
剩下的数据为“ 10 10 10 10 10 1110 1111 110 110 110”,继续解析数据,如图

口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“10 10 10 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边

在这里插入图片描述
剩下的数据为“ 10 10 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 10 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述

以此类推下去,全部都能解析出来。

这样的二叉树树,称为哈夫曼树。

下面是哈夫曼树的概念引用

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

由此,对比传统的存储二进制,可见节约了多少空间!通过这个规则,你已经知道为什么出现次数最多的要到前面,这样可以大大地提高读取效率。

有兴趣的朋友可以思考下图片的数据是怎么压缩的?欢迎到评论区 下留言哈哈。提示:一张图片可能有颜色值大量重复,比如一区域只有蓝色,其他全是红色的图片。

如果这篇文章有帮助到你,请点赞,评论,关注,收藏。

这篇关于7分钟0基础彻底理解常用数据压缩原理---哈夫曼编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740834

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse