(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程

2024-02-23 22:44

本文主要是介绍(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相似对角化 和 对角化 很大程度上是一回事
甚至判断两个矩阵的相似性,也跟对角化有很大关系

参考视频1:https://www.bilibili.com/video/BV1PA411T7b5/?spm_id_from=333.788&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频2:https://www.bilibili.com/video/BV14T4y127jf/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频3:https://www.bilibili.com/video/BV1Js4y1372V/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600


如下图的矩阵其实可以看成一个 “基向量” 变换,它把 (1, 0) 变成 (2, 1),把 (0, 1) 变成 (1, 2)
在这里插入图片描述

同时,我们把自然基下的矢量,使用上述矩阵进行变换时,大部分矢量的方向会被改变,但有部分矢量的方向是不会被改变的,如下图,这类矢量我们就称为特征向量
在这里插入图片描述

平面内还有另一个特征向量 (它总是保持不变吗?还是说只是因为特征值刚好是 1?与原特征向量垂直是必须的吗?)
这两个特征向量,似乎在自然基和变换基下,都是垂直的?
在这里插入图片描述

此时,可以把这两个特征向量作为一组新的基,那么,原来的变换矩阵在这个新的基下的作用就只是把矢量进行伸缩。于是,原来的变换矩阵在这个新的基下的作用就可以使用一个 “对角阵” 来表示
在这里插入图片描述

因此,这个 对角阵 和 原来的变换矩阵 是相似的。
X 和 X^(-1) 就是基变换矩阵,它们由 自然基 下的特征向量构成
一个更好的理解是,原来的变换矩阵可以拆分成:
1.先把自然基下的矢量映射到 “特征向量构成的一组基” 上
2.在 “特征向量构成的一组基” 上对矢量进行变换 (实际上就是伸缩)
3.再把变换后的矢量映射回 自然基 上
在这里插入图片描述

当我们把 基变换矩阵 的顺序改变时,对角矩阵的顺序也需要变换
在这里插入图片描述

此时就可以明白,一个矩阵能否相似对角化的充要条件是 “它的特征向量能否构成一组基”
在这里插入图片描述
构成一组基的条件:即这组特征向量是线性无关的

更精确的说法:矩阵A 有 n 个线性无关的特征向量
在这里插入图片描述

以下是一个小的引理
若有 n 个不同的特征值 =====> 则 A 有 n 个线性无关的特征向量 (不同特征值对应的特征向量线性无关)
NOTE: 反过来不一定成立哦!
在这里插入图片描述

如下图,是一个例子:
若三阶矩阵有三个特征值,那么它就可对角化,因为它拥有三个线性无关的特征向量
若只有 1, 2, 2,那就要重点关注 (lamda = 2) 所对应的特征向量,若它们线性无关,则可对角化;否则不行
在这里插入图片描述


以下是一个求特征值、特征向量,从而把矩阵相似对角化的例子:
在这里插入图片描述


当 lamda1 = lamda2 = 2 时,我们发现求出的矩阵只有一个非零行,那么也就是说它的 “自由未知量” 是 2。
这其实暗含了 “我们能够得到两个线性无关非零解” 的意思,也就说这个矩阵是可以相似对角化的
在这里插入图片描述

这篇关于(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740164

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于