MATLAB环境下基于短时傅里叶变换和Rényi熵的脑电信号和语音信号分析

本文主要是介绍MATLAB环境下基于短时傅里叶变换和Rényi熵的脑电信号和语音信号分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

傅里叶变换是不能很好的反映信号在时域的某一个局部范围的频谱特点的,这一点很可惜。因为在许多实际工程中,人们对信号在局部区域的特征是比较关心的,这些特征包含着十分有用的信息。这类信号因为在时域(或者是空间域)上具有突变的非稳定性和特点,他们的频谱均匀地分布在整个信号的频率轴上,用傅里叶变换的形式进行分析往往并没有那么高效。为此对这类信号必须考虑采用其他的方法,通常的解决办法就是引入一个局部的频率"参数",这样一个局部傅里叶变换就可以直接通过一个窗口来分析该类信号,在这个窗口内的信号近似也就是稳定的。另外一种等效方法则是修改傅里叶变换的正交基函数。短时傅里叶变换和小波变换就是根据上述原理建立并提出来的。

熵最早用来在热力学中表示物质状态的概率,之后又被引入到数学和信息论中,分别表示问题的不确定性以及系统的复杂性。Shannon熵是为了解决新的度量问题而被提出的。随着理论的不断深入与拓展,Shannon理论已被应用到数学、现代动力系统等自然科学和社会科学中,用来描述“不确定性”。随机事件或随机变量可以用来描述事件的不确定性,随机变量不同,Shannon熵的定义也不同。

Rényi熵是对Shannon熵的推广,可以用来判断信号的信息量和复杂度,被广泛应用于图像配准、无线电频谱感知以及生物医学领域等领域的信号处理。Rényi熵是一个无量纲指标,当概率集的所有值几乎相等时,Rényi熵的值较大,对应的系统复杂度较大;如果只有少数值是大的,而其他值保持较小,Rényi熵的值较小,对应的系统复杂度较低。

该代码为MATLAB环境下基于短时傅里叶变换(STFT)和Rényi熵的脑电信号和语音信号分析,部分代码如下:

%% Plot Renyi Amount in heatmap
figure();
renyi_heat_map = heatmap((renyi));
renyi_heat_map.Colormap = colormap(jet);
renyi_heat_map.XData = windowval;
renyi_heat_map.YData = overlap_percentage;
xlabel("Window length (sample)");
ylabel("overlap percent");
title("Renyi entropy for diffrent windows and overlaps")

程序出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家,担任《计算机科学》,《电子器件》 , 《现代制造过程》 ,《电源学报》,《船舶工程》 ,《轴承》 ,《工矿自动化》 ,《重庆理工大学学报》 ,《噪声与振动控制》 ,《机械传动》 ,《机械强度》 ,《机械科学与技术》 ,《机床与液压》,《声学技术》,《应用声学》,《石油机械》,《西安工业大学学报》等中文核心审稿专家。
擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于MATLAB环境下基于短时傅里叶变换和Rényi熵的脑电信号和语音信号分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739071

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文