为什么先进的 RAG 方法对 AI 的未来至关重要?

2024-02-23 11:12

本文主要是介绍为什么先进的 RAG 方法对 AI 的未来至关重要?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。

欢迎关注公众号(NLP Research),及时查看最新内容

原文标题:Why Are Advanced RAG Methods Crucial for the Future of AI?

原文地址:https://medium.com/towards-data-science/why-are-advanced-rag-methods-crucial-for-the-future-of-ai-462e0dc5a208


为什么先进的 RAG 方法对 AI 的未来至关重要?

掌握先进的RAG技术:解锁AI驱动应用的未来

介绍

检索增强生成(RAG)是生成式人工智能领域的一大进步,它将高效的数据检索与大型语言模型的强大功能结合在一起。

RAG 的核心工作是利用向量搜索挖掘相关的现有数据,将这些检索到的信息与用户的查询结合起来,然后通过类似 ChatGPT 的大型语言模型进行处理。

这种 RAG 方法可确保生成的响应不仅精确,而且还能反映当前的信息,从而大大减少输出中的不准确或 “幻觉”。

然而,随着人工智能应用领域的不断扩大,对 RAG 提出的要求也变得更加复杂多样。基本的 RAG 框架虽然强大,但可能已不足以满足不同行业和不断发展的使用情境的细微需求。这就是高级 RAG 技术发挥作用的地方。这些增强的方法被量身定制以解决特定的挑战,在信息处理中提供更高的精度、适应性和效率。

了解 RAG 技术

基本RAG的实质

检索增强生成(RAG)将数据管理与智能查询相结合,以提高人工智能的响应精度。

  • 数据准备:首先是用户上传数据,然后对数据进行分块并用嵌入式技术存储,为检索奠定基础。

  • 检索:一旦提出问题,系统就会利用矢量搜索技术对存储的数据进行挖掘,找出相关信息。

  • LLM 查询:检索到的信息被用于为语言模型 (LLM) 提供上下文,语言模型通过将上下文与问题相结合来准备最终的提示。结果是根据所提供的丰富的上下文数据生成答案,这证明 RAG 能够生成可靠、明智的答案。

整个过程如图所示,强调了 RAG 对可靠数据处理和根据上下文生成答案的重视,这对于高级人工智能应用至关重要。

随着人工智能技术的发展,RAG 的能力也在不断提高。先进的 RAG 技术层出不穷,不断突破这些模型所能达到的极限。这些进步不仅仅是更好的检索或更流畅的生成。它们包含一系列改进,包括增强对上下文的理解、更复杂地处理细微查询,以及无缝集成各种数据源的能力。

技术 1:Self-Querying Retrieval(自查询检索)

自查询检索是人工智能驱动的数据库系统中的一项前沿技术,它通过自然语言理解来增强数据查询功能。例如,如果您有一个产品目录数据集,您想搜索 “a black leather mini skirt less than 20 dollars”,您不仅要对产品描述进行语义搜索,还可以对产品的子类别和价格进行过滤。

  • Natural Language Query Processing(自然语言查询处理):首先由 LLM 解释用户的自然语言查询,提取意图和上下文。

  • Metadata Field Information(元数据字段信息):要实现这一点,必须预先提供文档中的元数据字段信息。这些元数据定义了数据的结构和属性,为构建有效的查询和筛选提供指导,确保搜索结果的准确性和相关性。

  • Query Construction(查询构建):接下来,LLM 会构建一个结构化查询,既包括用于向量搜索的语义元素,又包括用于提高精度的元数据过滤器。

  • Executing the Query(执行查询):该结构化查询应用于 MongoDB 的向量搜索,根据语义相似性和元数据相关性过滤结果。

通过从自然语言中构建结构化查询,自查询检索可同时考虑语义元素和元数据,从而确保数据获取的效率和精度。

import openai
import pymongo
from bson.json_util import dumps# OpenAI API key setup
openai.api_key = 'your-api-key'# Connect to MongoDB
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client['your_database']
collection = db['your_collection']# Function to use GPT-3.5 for interpreting natural language query and outputting a structured query
def interpret_query_with_gpt(query):response = openai.Completion.create(model="gpt-3.5-turbo",prompt=f"Translate the following natural language query into a MongoDB vector search query:\n\n'{query}'",max_tokens=300)return response.choices[0].

这篇关于为什么先进的 RAG 方法对 AI 的未来至关重要?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738440

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数