步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法

本文主要是介绍步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法

  • 前言
    • 基本信息
    • 前言说明
  • 8.2 位置定位精度的解决方法
    • 1 . 驱动电路的改善
      • (1) 额定电压(电流)驱动:
      • (2) 2相激磁驱动:
      • (3) 多步进位置定位:
    • 2 . 电机的改善
      • (1) 微调定子结构的改善:
      • (2) 三相HB型高分辨率电机的改善:
      • (3) RM型细分时的改善:

前言

基本信息

名称描述说明
教材名称步进电机应用技术
作者坂本正文
译者王自强

前言说明

根据我读的《步进电机应用技术》这本书,进行的学习过程中的知识记录和心得体会的记录。

8.2 位置定位精度的解决方法

1 . 驱动电路的改善

(1) 额定电压(电流)驱动:

  参看图6.8,从额定电压降低电压来驱动步进电机,发现位置定位精度变差。
  例如:在空载时,用编码器作为负载,在额定电压(电流)时的精度与低于额定电压(电流)比较,精度变化较大。如图6.8所示,齿槽转矩使特性畸变的程度依据所加电压而不同,电压越低,齿槽转矩影响越明显。作者经验认为角度精度太差是很麻烦的,会引起测量电压(电流)不准。大家会注意到,转矩与电压有一定关系,而此关系如不同,会使空载时的角度精度变得很差或成为盲点。

(2) 2相激磁驱动:

  1相激磁驱动定子齿与转子齿作位置定位。相对2相激磁,由定子的2个相绕组激磁,转子齿磁场与定子磁场平衡,作位置定位。因1相激磁驱动吋,其误差精度为各定子相的本身机械精度,而2相激磁误差,由多极位置决定,误差有所缓解,精度变好。特别是纵列型的两相PM型步进电机,1相激磁与2相激磁比较,1相激磁精度会差一些。

(3) 多步进位置定位:

  两相步进电机时以2或4步进位置定位驱动;三相步进电机3或6步进位置定位驱动。如图6.15及6. 16是两相HB型步进电机的例子,如每4步进位置定位,精度大幅提高。
  例如,每1. 8°位置定位时,1. 8°并非使用全步进,而是使用0. 9°的步进电机,以2步进驱动1. 8°位置定位,全步进选择0. 6°的步进电机,3步进驱动有0.6°X3 =1. 8°的驱动方式.此种方式可以大大提高精度。其原因见第7章的式(7. 1)〜式(7. 3)及图7. 1。

2 . 电机的改善

(1) 微调定子结构的改善:

  已知定子的微调结构能改善位置定位精度。以两相电机为例,微调结构,可以降低齿槽转矩,距角特性变为正弦波。三相HB型1.2°的步进电机,六主极无微调,与12主极有微调的全步进驱动时的位置精度比较如图8. 20所示,1/8细分驱动时的位置定位精度比较如图8.21所示。
  三相12主极微调结构步进电机全步进时,位置定位精度可以改善士2%以内。在细分时,微调结构精度提高近50%。细分步距角精度比全步距角运行的精度大。步距采用8分割时,步距角为1. 278 = 0. 15%以此作为控制计算基准,其精度值当然比全步距角时要高。

(2) 三相HB型高分辨率电机的改善:

  可以参照7. 2节中的“高分辨率电机的选用”的详细说明。三相HB型步进电机有2相1. 8°的1/3,即0.6°的高分辨率电机,由于驱动芯片可以在市场上买到,所以可以很容易地实现高精度位置定位。
在这里插入图片描述
在这里插入图片描述

(3) RM型细分时的改善:

  以HB型步进电机细分的角度,用于位置定位时,其精度会有问题。 RM型10细分位置定位时,计算出的位置是线性变化的,详细见第2章的图2. 42细分时的角度精度比较。

这篇关于步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737813

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署