基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

2024-02-23 06:36

本文主要是介绍基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

写上篇文章时测试过程比较乱,写的时候有些地方有点失误,所以重新写了这篇
本文内容均在RGB-D环境下进行程序测试

本文涉及到的动态特征点剔除速度均是以https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_xyz数据进行实验

方法1:segment坐标点集合逐一排查剔除

利用YOLOv8的segment获取动态对象(这里指人person)所在区域的坐标点集合segpoints,之后将提取的特征点的坐标逐一与segpoints中的所有坐标作判断,将出现在segpoints中的特征点的坐标改为(-1,-1),然后在畸变校正时会将坐标为(-1,-1)的异常坐标剔除。但是segpoints中的数据量太大,完成一次剔除任务花费的时间太长(基本在40~50ms,这个与动态区域的大小即segpoints中的点数是有关的)。另外,特征点坐标为浮点型,而segpoints中的坐标为整型,其实没必要非用 = 判断,可以判断特征点在获取的动态目标区域坐标的周围1(可以调整,我最终在程序中使用半径为2)个像素就可以了,这已经很接近=了。

下面是部分代码:

std::vector<cv::Point> segpoints;
for (auto& obj:objs_seg) {int idx = obj.label;if (idx == 0){cv::Mat locations;cv::findNonZero(obj.boxMask == 255, locations);for (int i = 0; i < locations.rows; ++i) {cv::Point segpoint = locations.at<cv::Point>(i);segpoint.x += obj.rect.x;segpoint.y += obj.rect.y;segpoints.push_back(segpoint);}}
}
// 动态特征点的判断
for (int k=0; k<mvKeys.size(); ++k){const cv::KeyPoint& kp = mvKeys[k];bool isDynamic = false;for (int kk = 0; kk < segpoints.size(); ++kk) {if (kp.pt.x > segpoints[kk].x-3 && kp.pt.x < segpoints[kk].x+3 && kp.pt.y > segpoints[kk].y-3 && kp.pt.y < segpoints[kk].y+3) {mvKeys[k] = cv::KeyPoint(-1,-1,-1);isDynamic = true;break;}}vbInDynamic_mvKeys.push_back(isDynamic);
}

方法2:利用目标检测框

利用YOLOv8进行目标检测,将检测到的目标分为两类:动态对象和静态对象。
这里仅将person设为动态对象。获取动态对象及静态对象的检测框后判断提取的特征点是否在动态对象检测框内以及是否在静态对象检测框内。

1.特征点在动态对象检测框内而不在静态对象检测框内,则满足剔除条件,将其剔除;
2.其余情况皆不满足剔除条件。

采用这种方法速度提升至0.02~0.03ms.

struct DyObject {cv::Rect_<float> rect;int              id = 0;
};std::vector<ORB_SLAM2::DyObject> detect_results;
for (auto& obj:objs_det)
{int class_id = 0;// id为0代表其为静态对象int class_label = obj.label;if (class_label == 0){// 如果是人person则将其id改为1即动态对象class_id = 1;}cv::Rect_<float> bbox;bbox = obj.rect;ORB_SLAM2::DyObject detect_result;detect_result.rect = bbox;detect_result.id = class_id;detect_results.push_back(detect_result);
}
// 判断特征点是否在动态检测框内
bool Frame::isDynamic(const int& i,std::vector<DyObject>& detect_results){const cv::KeyPoint& kp = mvKeys[i];float kp_u  = kp.pt.x;float kp_v = kp.pt.y;bool is_dynamic = false;for(auto& result:detect_results){int idx = result.id;if (idx == 1){double left = result.rect.x;double top = result.rect.y;double right = result.rect.x + result.rect.width;double bottom = result.rect.y + result.rect.height;if(kp_u>left-2 && kp_u<right+2 && kp_v>top-2 && kp_v<bottom-2){// 如果特征点在动态目标检测框内is_dynamic = true;}}}return is_dynamic;
}// 判断特征点是否在静态检测框内
bool Frame::isStatic(const int& i,std::vector<DyObject>& detect_results){const cv::KeyPoint& kp = mvKeys[i];float kp_u  = kp.pt.x;float kp_v = kp.pt.y;bool is_static = false;for(auto& result:detect_results){int idx = result.id;if (idx == 0){double left = result.rect.x;double top = result.rect.y;double right = result.rect.x + result.rect.width;double bottom = result.rect.y + result.rect.height;if(kp_u>left && kp_u<right && kp_v>top && kp_v<bottom){is_static = true;}}}return is_static;}

优化(方法3):目标检测框+实例分割

针对方法1关于速度即处理数据量太大的问题,其实可以将方法1与方法2结合运用,先利用方法2进行判断特征点是否在动态目标的检测框内(不过不需要判断是否在静态目标的检测框内了,方法2中如果在静态目标检测框内就保留该点而不会被剔除,这里舍弃此步骤也是宁缺毋滥的原则),如果判断结果为真的话,则利用方法1将特征点与实例分割的Mask坐标进行判断即可,这样就可以节省很多时间了。

// 动态目标特征点的判断
//先定义一种目标检测的结果结构
struct DyObject {cv::Rect_<float> rect;std::vector<cv::Point> pts;int              id = 0;
};for (auto& obj:objs_seg) {int idx = obj.label;std::vector<cv::Point> segpoints;cv::Mat locations;cv::findNonZero(obj.boxMask == 255, locations);for (int i = 0; i < locations.rows; ++i) {cv::Point segpoint = locations.at<cv::Point>(i);cv::Rect_<float> rect;segpoint.x += obj.rect.x;segpoint.y += obj.rect.y;segpoints.push_back(segpoint);}ORB_SLAM2::DyObject detect_result;detect_result.rect = obj.rect;detect_result.pts = segpoints;detect_result.id = idx;detect_results.push_back(detect_result);
}

速度控制在了25ms以内。

方案1可以被舍弃了,对于方法2与方法3,测试一下二者在精度上的差异,因为从上面的工作中可以看出方法2的速度很快,如果精度差异很小的话为了SLAM实时性还是采用方法2比较好。
TUM提供了SLAM轨迹精度评估工具:
evaluate_ate.py、evaluate_rpe.py、associate.py
具体内容:https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools
将上面三个代码下载后就可以对TUM数据集的结果轨迹进行精度评估了。

首先是方法2仅利用目标检测框的一个特征点剔除情况:紫色的点就是之后会被剔除的点。

然后是方法3的特征点剔除情况:

上面两张图片的对比可以看出方法2会将一些有用的特征点也标记为动态特征点,而方法3会更精确。关于图片中红色圆圈,是我做的纹理分析,目前还没完全做好所以就先不讲了。

我对ORB-SLAM2与我基于ORB-SLAM2andYOLOv8(方法2与方法3)在数据集rgbd_dataset_freiburg3_walking_xyz的结果轨迹进行了精度评估,结果如下:

精度评估
TUM-freiburg3_walking_xyzORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.5555830.0225210.018761
ATE0.4742760.0173880.014755

方法3利用目标检测框+实例分割的方法的精度是最优的。

下面再测测https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_rpy

精度评估
TUM-freiburg3_walking_rpyORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.9686050.0358530.035431
ATE0.7880890.0299420.028222

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_sitting_halfsphere

精度评估
TUM-freiburg3_walking_halfphereORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.3579840.0452500.029718
ATE0.2940750.0363010.023612

从以上从三个数据集获得的三组精度评估结果来看,方法3的精度最高,25ms的动态特征点处理速度也是可接受的(我的电脑算是比较旧了)。

这篇关于基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737798

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A