C语言第二十八弹---整数在内存中的存储

2024-02-22 21:12

本文主要是介绍C语言第二十八弹---整数在内存中的存储,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】

目录

1、整数在内存中的存储

2、大小端字节序和字节序

2.1、什么是大小端?

2.2、为什么有大小端?

2.3、练习

2.3.1、练习1

2.3.2、练习2

2.3.3、练习3

2.3.4、练习4

2.3.5、练习5

2.3.6、练习6

总结


1、整数在内存中的存储

在讲解操作符的时候,我们就讲过了下面的内容:
整数的2进制表示方法有三种,即原码、反码和补码
三种表示方法均有 符号位和数值位 两部分,符号位都是用 0表示“正”,用1表示“负” ,而数值位最高位(第一位)的⼀位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值⼀律用补码来表示和存储。
原因在于,使用补码,可以将符号位和数值域统⼀处理; 同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

2、大小端字节序和字节序

当我们了解了整数在内存中存储后,我们调试看⼀个细节:
#include <stdio.h>
int main()
{int a = 0x11223344;return 0;
}
调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为什么呢?

2.1、什么是大小端?

其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
上述概念需要记住,方便分辨大小端。

2.2、为什么有大小端?

为什么会有大小端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语言中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:⼀个 16bit short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么
0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中,
0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而
KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

2.3、练习

2.3.1、练习1

请简述大端字节序和小端字节序的概念,设计⼀个小程序来判断当前机器的字节序。(10分)-百度笔试题。
思路一:
创建一个int类型变量 i 赋值成1,如果通过char*解引用也得到1那么就是小端。
//代码1
#include <stdio.h>
int check_sys()
{int i = 1;return (*(char *)&i);
}
int main()
{int ret = check_sys();if(ret == 1){printf("小端\n");}else{printf("大端\n");}return 0;
}

思路二:

使用联合体方法,创建一个char类型和一个int类型的联合体,将int类型的数据赋值成1,如果char类型的数据也为1,则为小端。

//代码2
int check_sys()
{union{int i;char c;}un;un.i = 1;return un.c;
}

2.3.2、练习2

#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}

在第十六弹的操作符(下)中我们谈到整型提升,C语言中整型算术运算总是至少以缺省整型类型的精度来进行的。( 即储存数据类型小于整型储存的32比特位时就使小于32比特位的数据类型整型提升) 为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型(int),这种转换称为整型提升。

1. 有符号整数提升是按照变量的数据类型的符号位来提升的
2. 无符号整数提升,高位补0

我们可以知道我们一般整数进行计算时需要转化为int类型。

10000000 00000000 00000000 00000001    -1的原码

111111111 111111111 111111111 111111110    -1的反码

111111111 111111111 111111111 111111111    -1的补码

但是a的类型为char类型,因此只能存储8个bit位,即11111111   a在内存中实际存储

b的类型为signed char类型,因此只能存储8个bit位,即11111111   b在内存中实际存储

c的类型为unsigned char类型,因此只能存储8个bit位,即11111111   c在内存中实际存储

a按照%d进行打印,即10进制无符号整数打印,a为char类型,根据整型提升规则,有符号按照符号位提升,a提升之后为11111111 11111111 11111111 11111111

11111111 11111111 11111111 11111111    补码

11111111 11111111 11111111 11111110    反码

1000000 0000000 0000000 00000001   原码    值为-1    因此a打印的值为-1,b同理

c按照%d进行打印,即10进制无符号整数打印,c为unsigned char类型,根据整型提升规则,无符号在前面补0,c提升后为00000000 00000000 00000000 11111111 ----为正数,因为正数的原反补码相同,因此c的10进制值为255

2.3.3、练习3

#include <stdio.h>
int main()
{char a = -128;printf("%u\n",a);return 0;
}

10000000 00000000 00000000 10000000     -128原码

111111111 111111111 111111111 011111111     -128反码

111111111 111111111 111111111 10000000     -128补码

a为char类型,因此a在内存中实际存储为 10000000

a按照%u进行打印,即10进制无符号打印,a首先进行整型提升,无符号按照符号位进行提升,即

11111111 11111111 11111111 10000000    提升之后

按照无符号打印,即直接打印,转化为10进制后结果为:4,294,967,168

#include <stdio.h>
int main()
{char a = 128;printf("%u\n",a);return 0;
}

00000000 00000000 00000000 10000000     128原、反、补码  正数都相等

a为char类型,在内存中存储为10000000

a按照%u打印,先整型提升,char类型按照符号位提升,即

11111111 11111111 11111111 10000000

10进制无符号打印即为4,294,967,168

2.3.4、练习4

#include <stdio.h>
int main()
{char a[1000];int i;for(i=0; i<1000; i++){a[i] = -1-i;}printf("%d",strlen(a));return 0;
}

strlen计算的是'\0'之前的字符串长度,即需知道什么时候为0,循环第一次a[i]=-1-0=-1,然后-2,一直到-128,-128-1为127,然后一直减到0,中间个数有255个,因此长度为255.

2.3.5、练习5

#include <stdio.h>
unsigned char i = 0;
int main()
{for(i = 0;i<=255;i++){printf("hello world\n");}return 0;
}

根据unsigned char类型大小的取值范围,范围为0-255,因此 i 一定小于等于255,所以此处为死循环,一直打印hello world

#include <stdio.h>
int main()
{unsigned int i;for(i = 9; i >= 0; i--){printf("%u\n",i);}return 0;
}

根据unsigned int类型大小的取值范围,范围为0-4,294,967,295,i 一定大于等于0,因此此处也为死循环,先打印9 8 7 ....0  然后打印最大值,最大值-1.....一直循环。

调试可得下图。

2.3.6、练习6

#include <stdio.h>
int main()
{int a[4] = { 1, 2, 3, 4 };int *ptr1 = (int *)(&a + 1);int *ptr2 = (int *)((int)a + 1);printf("%x,%x", ptr1[-1], *ptr2);return 0;
}

x86环境得到的结果,x64可能会出错。

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

这篇关于C语言第二十八弹---整数在内存中的存储的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736519

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s搭建nfs共享存储实践

《k8s搭建nfs共享存储实践》本文介绍NFS服务端搭建与客户端配置,涵盖安装工具、目录设置及服务启动,随后讲解K8S中NFS动态存储部署,包括创建命名空间、ServiceAccount、RBAC权限... 目录1. NFS搭建1.1 部署NFS服务端1.1.1 下载nfs-utils和rpcbind1.1

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本