数学知识(四)(容斥原理、博弈论)

2024-02-22 19:36

本文主要是介绍数学知识(四)(容斥原理、博弈论),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、容斥原理

容斥原理公式

一共加或者减的式子个数

 

(一)利用容斥原理解决求能被质数整除的数的个数

890计算能被整除的数的个数

因为一共有2^n-1种选法,可以用位运算的方式枚举,对于得到的每一种选法,根据存在的数的个数判断前面是1还是-1。枚举到2^n-1的所有二进制数,判断每一位上的数是否是1,

最重要的转变是:将能被各个质数整除的集合看成一个个的集合。根据容斥原理,需要计算各个集合的组合方式的元素个数然后相加。在找组合方式的时候因为一共有2^n-1种,可以用m位的二进制数表示。如何计算一个一个组合的可以整除的个数。一位一位右移&1判断。

#include<bits/stdc++.h>
//890 求能被质数整除的数
using namespace std;
typedef long long LL;
const int N=20;
int n,m;
int p[N];
int main()
{cin>>n>>m;//读入所有的质数for(int i=0;i<m;i++)cin>>p[i];int res=0;//遍历所有二进制数for(int i=1;i<1<<m;i++){int cnt=0;int t=1;//遍历这个二进制数的所有位for(int j=0;j<m;j++){if(i>>j&1){//记录当前选择集合的个数cnt++;//并将集合元素相乘t*=p[j];//如果n一倍的t都装不了就breakif(t>n){t=-1;break;}}}if(t!=-1){if(cnt%2)res+=n/t;else res-=n/t;}}cout<<res<<endl;}

二、博弈论

891 先手是否先获胜

结论:

如果异或值不是0,先手可以拿一堆石子儿让拿之后状态变成必输。

异或不会产生1,只会消除1。

因为异或上x之后会ai一定会变小,也就是这一堆石子儿是可以让棋手拿的。最后剩余ai异或x。整个式子异或之后是0.也就是可以进行一次操作并得到一个对手必败的局面(不管对手怎么去拿异或之后都不为0)。也就是先手先胜利。

先手遇到的总不是0,后手遇到的总是0,最后后手败。

#include<bits/stdc++.h>
//891 Nim游戏
using namespace std;
typedef long long LL;
int main()
{int n;cin>>n;int res=0;while(n--){int x;cin>>x;res^=x;}if(res)puts("Yes");else puts("No");return 0;
}

三、sg函数

mex是某个点的出边指向的所有点的值(不再其中)的最小的自然数。

如果sg不为0,就说明有出边指向0

nim游戏和sg函数含义相似。每个结点的sg函数可以看做一个小石头堆。nim游戏中异或之后如果不等于0,可以找到ai,拿走ai-ai^x。最后得到的状态就是0。在sg中。如果异或之后的值非0,和nim一样,将其变成ai^x。因为 ai^x<ai.所以一定有一个出边指向ai^x成立,并且之后的状态变成0.

#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_set>
using namespace std;
const int N = 110, M = 10010;
int n, m;
int s[N], f[M];
int sg(int x)
{if (f[x] != -1) return f[x];unordered_set<int> S;for (int i = 0; i < m; i ++ ){int sum = s[i];if (x >= sum) S.insert(sg(x - sum));}for (int i = 0; ; i ++ )if (!S.count(i))return f[x] = i;
}int main()
{cin >> m;for (int i = 0; i < m; i ++ ) cin >> s[i];cin >> n;memset(f, -1, sizeof f);int res = 0;for (int i = 0; i < n; i ++ ){int x;cin >> x;res ^= sg(x);}if (res) puts("Yes");else puts("No");return 0;
}

这篇关于数学知识(四)(容斥原理、博弈论)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736270

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、