[ Python+OpenCV+Mediapipe ] 实现对象识别

2024-02-22 10:28

本文主要是介绍[ Python+OpenCV+Mediapipe ] 实现对象识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、写在前面

       本文所用例子为个人学习的小结,如有不足之处请各位多多海涵,欢迎小伙伴一起学习进步,如果想法可在评论区指出,我会尽快回复您,不胜感激!

        所公布代码或截图均为运行成功后展示。

二、本文内容

       使用OpenCV和Mediapipe提供的库,通过摄像头捕捉画面,调用mpp的模型识别库,识别对象的是什么,并标注可信度。

        如下图识别泰迪熊等。

 官方给出的模型库中还有很多目标,我整理在下方表格里:

https://storage.googleapis.com/mediapipe-tasks/object_detector/labelmap.txt

personelephant大象wine glass酒杯dining table餐桌
bicycle自行车bearcup杯子toilet坐便器
car汽车zebra斑马forktv电视
motorcycle摩托车giraffe长颈鹿knifelaptop笔记本电脑
airplane飞机backpack背包spoon勺子mouse老鼠
bus公共汽车umbrella雨伞bowlremote遥远的
train火车handbag手提包banana香蕉keyboard键盘
truck卡车tie领带apple苹果cell phone手机
boatsuitcase手提箱sandwich三明治microwave微波炉
traffic light交通灯frisbee飞盘orange橙色oven烤箱
fire hydrant消防栓skis滑雪板broccoli西兰花toaster烤面包机
stop sign停车标志snowboard滑雪板carrot胡萝卜sink下沉
parking meter停车收费表sports ball运动球hot dog热狗refrigerator冰箱
bench长凳kite风筝pizza披萨book
birdbaseball bat棒球棍donut甜甜圈clock时钟
catbaseball glove棒球手套cake糕饼vase花瓶
dogskateboard滑板chair椅子scissors剪刀
horsesurfboard冲浪板couch沙发teddy bear泰迪熊
sheeptennis racket网球拍potted plant盆栽植物hair drier吹风机
cow母牛bottle瓶子bedtoothbrush牙刷

三、开发环境

1.Python 3.9

2.OpenCV

3.Mediapipe:https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

4.comtypes

5.numpy

IDE:

1.Pycharm

四、代码实现

4.1 引入所需包

        引入后报红,则说明缺少对应module,可以通过pip install xx解决,如果pip install失败,可以尝试更换镜像源

 #更换为豆瓣的镜像源

 pip config set global.index-url https://pypi.douban.com/simple

import mediapipe as mp
from mediapipe.tasks import python
import cv2
import numpy as np
from mediapipe.tasks.python import vision

4.2 定义图像框标注的方法:

        初始化mediapipe的一些属性,并获取系统音量控制器及音量范围。

'''
用于在图像上绘制目标检测结果的边界框和标签:
函数接受两个参数:image 表示要绘制目标检测结果的图像,detection_result 是包含检测结果的对象。
对于每个检测到的对象,函数会执行以下操作:
绘制边界框:根据检测到的对象的边界框信息,使用 cv2.rectangle 在图像上绘制一个矩形框,框的颜色为 TEXT_COLOR,线宽为 3。
绘制标签和置信度:从检测结果中获取对象的类别和置信度信息,然后将类别名称和置信度值格式化为文本,将其放置在边界框的左上角,以便在图像上显示对象的标签和置信度。
最后,函数返回经过绘制标框和标识后的图像。
'''
# 图像解析标框及标识
def visualize(image,detection_result
) -> np.ndarray:for detection in detection_result.detections:# Draw bounding_boxbbox = detection.bounding_boxstart_point = bbox.origin_x, bbox.origin_yend_point = bbox.origin_x + bbox.width, bbox.origin_y + bbox.heightcv2.rectangle(image, start_point, end_point, TEXT_COLOR, 3)# Draw label and scorecategory = detection.categories[0]category_name = category.category_nameprobability = round(category.score, 2)result_text = category_name + ' (' + str(probability) + ')'text_location = (MARGIN + bbox.origin_x,MARGIN + ROW_SIZE + bbox.origin_y)cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,FONT_SIZE, TEXT_COLOR, FONT_THICKNESS)return image

4.3 定义并调用模型库

        将下载好的模型放在项目同级目录下

'''
调用识别对象模型
模型下载地址:https://storage.googleapis.com/mediapipe-models/object_detector/efficientdet_lite0/float32/latest/efficientdet_lite0.tflite
'''
base_options = python.BaseOptions(model_asset_path='efficientdet_lite0.tflite')
options = vision.ObjectDetectorOptions(base_options=base_options,score_threshold=0.5)
with vision.ObjectDetector.create_from_options(options) as detector:

4.4 转换图像并识别

        将摄像头捕捉到的每一帧图片转换为mediapipe可用的格式,并在检测后返回检测结果,调用图像标识方法绘制对象识别框及名称标注,显示于界面上

        #创建mediapipe格式的图片mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)#检测该图片detection_result = detector.detect(mp_image)#复制图片数据到np数组中,以便进行数据分析image_copy = np.copy(mp_image.numpy_view())#调用图像标识方法annotated_image = visualize(image_copy, detection_result)#加载模型到界面上cv2.imshow("Object detection", annotated_image)  # CV2窗体

五、看一看实际效果吧

        还可以识别更多的目标,请自己尝试一下吧        

5.1 识别人脸

        (没错!我是彦祖!)

5.2 识别手机

        1+8Pro 512G 金色传说品质~

5.3 泰迪熊

        鬼知道官方为什么要识别泰迪熊?

5.4 自行车

        是时候锻炼身体了!

5.5 修狗

        乖巧金毛,我爱修狗

5.6 修猫

        小猫小猫,天下第一好!

六、完整代码

import mediapipe as mp
from mediapipe.tasks import python
import cv2
import numpy as np
from mediapipe.tasks.python import visionMARGIN = 10  # pixels
ROW_SIZE = 10  # pixels
FONT_SIZE = 1
FONT_THICKNESS = 1
TEXT_COLOR = (0, 255, 0)
# 视频分辨率
resize_w = 1280
resize_h = 960'''
用于在图像上绘制目标检测结果的边界框和标签:
函数接受两个参数:image 表示要绘制目标检测结果的图像,detection_result 是包含检测结果的对象。
对于每个检测到的对象,函数会执行以下操作:
绘制边界框:根据检测到的对象的边界框信息,使用 cv2.rectangle 在图像上绘制一个矩形框,框的颜色为 TEXT_COLOR,线宽为 3。
绘制标签和置信度:从检测结果中获取对象的类别和置信度信息,然后将类别名称和置信度值格式化为文本,将其放置在边界框的左上角,以便在图像上显示对象的标签和置信度。
最后,函数返回经过绘制标框和标识后的图像。
'''
# 图像解析标框及标识
def visualize(image,detection_result
) -> np.ndarray:for detection in detection_result.detections:# Draw bounding_boxbbox = detection.bounding_boxstart_point = bbox.origin_x, bbox.origin_yend_point = bbox.origin_x + bbox.width, bbox.origin_y + bbox.heightcv2.rectangle(image, start_point, end_point, TEXT_COLOR, 3)# Draw label and scorecategory = detection.categories[0]category_name = category.category_nameprobability = round(category.score, 2)result_text = category_name + ' (' + str(probability) + ')'text_location = (MARGIN + bbox.origin_x,MARGIN + ROW_SIZE + bbox.origin_y)cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,FONT_SIZE, TEXT_COLOR, FONT_THICKNESS)return image'''
调用识别对象模型
模型下载地址:https://storage.googleapis.com/mediapipe-models/object_detector/efficientdet_lite0/float32/latest/efficientdet_lite0.tflite
'''
base_options = python.BaseOptions(model_asset_path='efficientdet_lite0.tflite')
options = vision.ObjectDetectorOptions(base_options=base_options,score_threshold=0.5)
with vision.ObjectDetector.create_from_options(options) as detector:# 初始化摄像头cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)while cap.isOpened():#获取每一帧画面success, frame = cap.read()# 如果读取到空帧,继续循环if not success:print("空帧.")continue# 重置该图片的大小frame = cv2.resize(frame, (resize_w, resize_h))#创建mediapipe格式的图片mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)#检测该图片detection_result = detector.detect(mp_image)#复制图片数据到np数组中,以便进行数据分析image_copy = np.copy(mp_image.numpy_view())#调用图像标识方法annotated_image = visualize(image_copy, detection_result)#加载模型到界面上cv2.imshow("Object detection", annotated_image)  # CV2窗体# 按下'q'键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()

七、小结

       Mediapipe还有很多库可以探索,目前我也只是在使用,之前通过opencv训练了人脸模型,后续还需要再深入研究一下模型训练之类的。想学的有很多,还要加油啊!

八、感谢

        感谢各位大佬的莅临,学习之路漫漫,吾将上下而求索。有任何想法请在评论区留言哦!

        再次感谢!

        

这篇关于[ Python+OpenCV+Mediapipe ] 实现对象识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734955

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法