[ Python+OpenCV+Mediapipe ] 实现对象识别

2024-02-22 10:28

本文主要是介绍[ Python+OpenCV+Mediapipe ] 实现对象识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、写在前面

       本文所用例子为个人学习的小结,如有不足之处请各位多多海涵,欢迎小伙伴一起学习进步,如果想法可在评论区指出,我会尽快回复您,不胜感激!

        所公布代码或截图均为运行成功后展示。

二、本文内容

       使用OpenCV和Mediapipe提供的库,通过摄像头捕捉画面,调用mpp的模型识别库,识别对象的是什么,并标注可信度。

        如下图识别泰迪熊等。

 官方给出的模型库中还有很多目标,我整理在下方表格里:

https://storage.googleapis.com/mediapipe-tasks/object_detector/labelmap.txt

personelephant大象wine glass酒杯dining table餐桌
bicycle自行车bearcup杯子toilet坐便器
car汽车zebra斑马forktv电视
motorcycle摩托车giraffe长颈鹿knifelaptop笔记本电脑
airplane飞机backpack背包spoon勺子mouse老鼠
bus公共汽车umbrella雨伞bowlremote遥远的
train火车handbag手提包banana香蕉keyboard键盘
truck卡车tie领带apple苹果cell phone手机
boatsuitcase手提箱sandwich三明治microwave微波炉
traffic light交通灯frisbee飞盘orange橙色oven烤箱
fire hydrant消防栓skis滑雪板broccoli西兰花toaster烤面包机
stop sign停车标志snowboard滑雪板carrot胡萝卜sink下沉
parking meter停车收费表sports ball运动球hot dog热狗refrigerator冰箱
bench长凳kite风筝pizza披萨book
birdbaseball bat棒球棍donut甜甜圈clock时钟
catbaseball glove棒球手套cake糕饼vase花瓶
dogskateboard滑板chair椅子scissors剪刀
horsesurfboard冲浪板couch沙发teddy bear泰迪熊
sheeptennis racket网球拍potted plant盆栽植物hair drier吹风机
cow母牛bottle瓶子bedtoothbrush牙刷

三、开发环境

1.Python 3.9

2.OpenCV

3.Mediapipe:https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

4.comtypes

5.numpy

IDE:

1.Pycharm

四、代码实现

4.1 引入所需包

        引入后报红,则说明缺少对应module,可以通过pip install xx解决,如果pip install失败,可以尝试更换镜像源

 #更换为豆瓣的镜像源

 pip config set global.index-url https://pypi.douban.com/simple

import mediapipe as mp
from mediapipe.tasks import python
import cv2
import numpy as np
from mediapipe.tasks.python import vision

4.2 定义图像框标注的方法:

        初始化mediapipe的一些属性,并获取系统音量控制器及音量范围。

'''
用于在图像上绘制目标检测结果的边界框和标签:
函数接受两个参数:image 表示要绘制目标检测结果的图像,detection_result 是包含检测结果的对象。
对于每个检测到的对象,函数会执行以下操作:
绘制边界框:根据检测到的对象的边界框信息,使用 cv2.rectangle 在图像上绘制一个矩形框,框的颜色为 TEXT_COLOR,线宽为 3。
绘制标签和置信度:从检测结果中获取对象的类别和置信度信息,然后将类别名称和置信度值格式化为文本,将其放置在边界框的左上角,以便在图像上显示对象的标签和置信度。
最后,函数返回经过绘制标框和标识后的图像。
'''
# 图像解析标框及标识
def visualize(image,detection_result
) -> np.ndarray:for detection in detection_result.detections:# Draw bounding_boxbbox = detection.bounding_boxstart_point = bbox.origin_x, bbox.origin_yend_point = bbox.origin_x + bbox.width, bbox.origin_y + bbox.heightcv2.rectangle(image, start_point, end_point, TEXT_COLOR, 3)# Draw label and scorecategory = detection.categories[0]category_name = category.category_nameprobability = round(category.score, 2)result_text = category_name + ' (' + str(probability) + ')'text_location = (MARGIN + bbox.origin_x,MARGIN + ROW_SIZE + bbox.origin_y)cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,FONT_SIZE, TEXT_COLOR, FONT_THICKNESS)return image

4.3 定义并调用模型库

        将下载好的模型放在项目同级目录下

'''
调用识别对象模型
模型下载地址:https://storage.googleapis.com/mediapipe-models/object_detector/efficientdet_lite0/float32/latest/efficientdet_lite0.tflite
'''
base_options = python.BaseOptions(model_asset_path='efficientdet_lite0.tflite')
options = vision.ObjectDetectorOptions(base_options=base_options,score_threshold=0.5)
with vision.ObjectDetector.create_from_options(options) as detector:

4.4 转换图像并识别

        将摄像头捕捉到的每一帧图片转换为mediapipe可用的格式,并在检测后返回检测结果,调用图像标识方法绘制对象识别框及名称标注,显示于界面上

        #创建mediapipe格式的图片mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)#检测该图片detection_result = detector.detect(mp_image)#复制图片数据到np数组中,以便进行数据分析image_copy = np.copy(mp_image.numpy_view())#调用图像标识方法annotated_image = visualize(image_copy, detection_result)#加载模型到界面上cv2.imshow("Object detection", annotated_image)  # CV2窗体

五、看一看实际效果吧

        还可以识别更多的目标,请自己尝试一下吧        

5.1 识别人脸

        (没错!我是彦祖!)

5.2 识别手机

        1+8Pro 512G 金色传说品质~

5.3 泰迪熊

        鬼知道官方为什么要识别泰迪熊?

5.4 自行车

        是时候锻炼身体了!

5.5 修狗

        乖巧金毛,我爱修狗

5.6 修猫

        小猫小猫,天下第一好!

六、完整代码

import mediapipe as mp
from mediapipe.tasks import python
import cv2
import numpy as np
from mediapipe.tasks.python import visionMARGIN = 10  # pixels
ROW_SIZE = 10  # pixels
FONT_SIZE = 1
FONT_THICKNESS = 1
TEXT_COLOR = (0, 255, 0)
# 视频分辨率
resize_w = 1280
resize_h = 960'''
用于在图像上绘制目标检测结果的边界框和标签:
函数接受两个参数:image 表示要绘制目标检测结果的图像,detection_result 是包含检测结果的对象。
对于每个检测到的对象,函数会执行以下操作:
绘制边界框:根据检测到的对象的边界框信息,使用 cv2.rectangle 在图像上绘制一个矩形框,框的颜色为 TEXT_COLOR,线宽为 3。
绘制标签和置信度:从检测结果中获取对象的类别和置信度信息,然后将类别名称和置信度值格式化为文本,将其放置在边界框的左上角,以便在图像上显示对象的标签和置信度。
最后,函数返回经过绘制标框和标识后的图像。
'''
# 图像解析标框及标识
def visualize(image,detection_result
) -> np.ndarray:for detection in detection_result.detections:# Draw bounding_boxbbox = detection.bounding_boxstart_point = bbox.origin_x, bbox.origin_yend_point = bbox.origin_x + bbox.width, bbox.origin_y + bbox.heightcv2.rectangle(image, start_point, end_point, TEXT_COLOR, 3)# Draw label and scorecategory = detection.categories[0]category_name = category.category_nameprobability = round(category.score, 2)result_text = category_name + ' (' + str(probability) + ')'text_location = (MARGIN + bbox.origin_x,MARGIN + ROW_SIZE + bbox.origin_y)cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,FONT_SIZE, TEXT_COLOR, FONT_THICKNESS)return image'''
调用识别对象模型
模型下载地址:https://storage.googleapis.com/mediapipe-models/object_detector/efficientdet_lite0/float32/latest/efficientdet_lite0.tflite
'''
base_options = python.BaseOptions(model_asset_path='efficientdet_lite0.tflite')
options = vision.ObjectDetectorOptions(base_options=base_options,score_threshold=0.5)
with vision.ObjectDetector.create_from_options(options) as detector:# 初始化摄像头cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)while cap.isOpened():#获取每一帧画面success, frame = cap.read()# 如果读取到空帧,继续循环if not success:print("空帧.")continue# 重置该图片的大小frame = cv2.resize(frame, (resize_w, resize_h))#创建mediapipe格式的图片mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)#检测该图片detection_result = detector.detect(mp_image)#复制图片数据到np数组中,以便进行数据分析image_copy = np.copy(mp_image.numpy_view())#调用图像标识方法annotated_image = visualize(image_copy, detection_result)#加载模型到界面上cv2.imshow("Object detection", annotated_image)  # CV2窗体# 按下'q'键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()

七、小结

       Mediapipe还有很多库可以探索,目前我也只是在使用,之前通过opencv训练了人脸模型,后续还需要再深入研究一下模型训练之类的。想学的有很多,还要加油啊!

八、感谢

        感谢各位大佬的莅临,学习之路漫漫,吾将上下而求索。有任何想法请在评论区留言哦!

        再次感谢!

        

这篇关于[ Python+OpenCV+Mediapipe ] 实现对象识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734955

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所