数据库管理-第153期 Oracle Vector DB AI-05(20240221)

2024-02-22 07:12

本文主要是介绍数据库管理-第153期 Oracle Vector DB AI-05(20240221),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据库管理153期 2024-02-21

  • 数据库管理-第153期 Oracle Vector DB & AI-05(20240221)
    • 1 Oracle Vector的其他特性
      • 示例1:
      • 示例2
    • 2 简单使用Oracle Vector
      • 环境
      • 创建包含Vector数据类型的表
      • 插入向量数据
    • 总结

数据库管理-第153期 Oracle Vector DB & AI-05(20240221)

作者:胖头鱼的鱼缸(尹海文)
Oracle ACE Associate: Database(Oracle与MySQL)
网思科技 DBA总监
10年数据库行业经验,现主要从事数据库服务工作
拥有OCM 11g/12c/19c、MySQL 8.0 OCP、Exadata、CDP等认证
墨天轮MVP、认证技术专家,ITPUB认证专家,OCM讲师
圈内拥有“总监”、“保安”、“国产数据库最大敌人”等称号,非著名社恐(社交恐怖分子)
公众号:胖头鱼的鱼缸;CSDN:胖头鱼的鱼缸(尹海文);墨天轮:胖头鱼的鱼缸;ITPUB:yhw1809。
除授权转载并标明出处外,均为“非法”抄袭。

继续继续,本期将开始引入部分实操内容。

1 Oracle Vector的其他特性

  • SQL Join
    支持相似性搜索JOIN关系型数据。
  • 复杂、融合SQL
    – 支持所有类型的工作负载和数据模型:
    Graph, Text, JSON, Spatial, Relational, etc.
    – 支持所有 SQL,包括复杂的运算和功能:
    Window analytic functions, stored procedures, aggregation
  • 与向量搜索组合成复杂的、融合的SQL

在企业应用中,相似性搜索Joins关系型数据非常常见。需要企业级基于成本的优化器来决定选择Join和向量索引使用等。就现有的专用向量数据库而言,不可能做到以上功能。

示例1:

返回其中包含与此查询文本相似的文本,其中该书的类型为“小说”,作者来自“危地马拉(Guatemala)”的前5本书

image.png

Select pageID from Authors, Books, Pages where Authors.authorID = Books.authorID and Books.bookID = Pages.bookID and Books.bookGenre = 'Fiction' and Author.authorCountry = 'Guatemala'
order by vector_distance(pageVec, :queryVec) fetch approx first 5 rows only;

示例2

显示过去5年中根据与所提供查询图像的相似性按年份分组的前3张照片。这些照片应该是在距离旧金山20英里的范围内拍摄的,至少有100人观看过。

image.png

2 简单使用Oracle Vector

环境

项目内容
OSOracleLinux 9.3
DBOracle DB 23c
HOSTNAMEoradb23c
CDBorcl
PDBorclpdb1

由于Oracle DB 21c开始,Oracle取消了Non-CDB,因此后续操作都在PDB中执行。

创建包含Vector数据类型的表

vector数据类型作为Oracle DB 23c默认自带的数据类型,不需要类似于其他数据库那样的额外操作。

create table flower_vec (id number primary key,flower_image blob,flower_vector vector);

image.png

插入向量数据

这里我从百度随便找了一张花的图片,复制到/home/oracle/flower下,文件名为flower_example.png。
image.png
首先先创建一个基础表用来生成图片的二进制数据:

create table flower (flower_image blob);

导入图片二进制信息:

create directory flower_dir as '/home/oracle/flower';declarel_bfile bfile;l_blob blob;
begininsert into flower(flower_image) values (empty_blob()) return flower_image into l_blob;l_bfile := bfilename ('FLOWER_DIR','flower_example.png');dbms_lob.open(l_bfile, dbms_lob.file_readonly);dbms_lob.loadfromfile(l_blob,l_bfile,dbms_lob.getlength(l_bfile));dbms_lob.close(l_bfile);commit;
end;
/

image.png
生成向量数据并导入:
这里使用Python来生成向量数据并插入,关于SQL EMBEDDING放在正式版出来以后再测试:

from towhee import pipe, ops
p = (pipe.input('path').map('path', 'img', ops.image_decode()).map('img', 'vec', ops.image_embedding.timm(model_name='resnet50')).output('vec')
)
vector_data = p('flower_example.png').get()-->最终生成2048维度的向量,这里感谢我同事郑安宁同学提供的脚本

由于2048维度的向量超过了sqlplus支撑长度(Oracle Vector是支持至少4096维度的),因此只截取了前10个向量:

insert into flower_vec select 1,flower_image,to_vector('[0.050895579159259796,0.002409987384453416,0,0.01872553676366806,0.01558636873960495,0,0.0197914931923151,0,0.00522683234885335]') from flower;

image.png
image.png

总结

本期介绍了Oracle Vector的其他特性意见简单的实战使用。下一期将依据Oracle Livelabs中的介绍进行进一步探索。
老规矩,知道写了些啥。

这篇关于数据库管理-第153期 Oracle Vector DB AI-05(20240221)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734488

相关文章

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

MySQL 多表连接操作方法(INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN)

《MySQL多表连接操作方法(INNERJOIN、LEFTJOIN、RIGHTJOIN、FULLOUTERJOIN)》多表连接是一种将两个或多个表中的数据组合在一起的SQL操作,通过连接,... 目录一、 什么是多表连接?二、 mysql 支持的连接类型三、 多表连接的语法四、实战示例 数据准备五、连接的性

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使