线程池ForkJoinPool简介

2024-02-22 05:50
文章标签 线程 简介 forkjoinpool

本文主要是介绍线程池ForkJoinPool简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ForkJoinPool线程池最大的特点就是分叉(fork)合并(join),将一个大任务拆分成多个小任务,并行执行,再结合工作窃取模式(worksteal)提高整体的执行效率,充分利用CPU资源。

一. 应用场景

ForkJoinPool使用分治算法,用相对少的线程处理大量的任务,将一个大任务一拆为二,以此类推,每个子任务再拆分一半,直到达到最细颗粒度为止,即设置的阈值停止拆分,然后从最底层的任务开始计算,往上一层一层合并结果,简单的流程如下图:
forkjoin线程池原理
从图中可以看出ForkJoinPool要先执行完子任务才能执行上一层任务,所以ForkJoinPool适合在有限的线程数下完成有父子关系的任务场景,比如:快速排序,二分查找,矩阵乘法,线性时间选择等场景,以及数组和集合的运算。

下面是个简单的代码示例计算从1到1亿之间所有数字之和:

package com.javakk;import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
import java.util.stream.LongStream;/*** ForkJoinPool求和* @author 老K*/
public class ForkJoinPoolTest {private static ForkJoinPool forkJoinPool;/*** 求和任务类继承RecursiveTask* ForkJoinTask一共有3个实现:* RecursiveTask:有返回值* RecursiveAction:无返回值* CountedCompleter:无返回值任务,完成任务后可以触发回调*/private static class SumTask extends RecursiveTask<Long> {private long[] numbers;private int from;private int to;public SumTask(long[] numbers, int from, int to) {this.numbers = numbers;this.from = from;this.to = to;}/*** ForkJoin执行任务的核心方法* @return*/@Overrideprotected Long compute() {if (to - from < 10) { // 设置拆分的最细粒度,即阈值,如果满足条件就不再拆分,执行计算任务long total = 0;for (int i = from; i <= to; i++) {total += numbers[i];}return total;} else { // 否则继续拆分,递归调用int middle = (from + to) / 2;SumTask taskLeft = new SumTask(numbers, from, middle);SumTask taskRight = new SumTask(numbers, middle + 1, to);taskLeft.fork();taskRight.fork();return taskLeft.join() + taskRight.join();}}}public static void main(String[] args) {// 也可以jdk8提供的通用线程池ForkJoinPool.commonPool// 可以在构造函数内指定线程数forkJoinPool = new ForkJoinPool();long[] numbers = LongStream.rangeClosed(1, 100000000).toArray();// 这里可以调用submit方法返回的future,通过future.get获取结果Long result = forkJoinPool.invoke(new SumTask(numbers, 0, numbers.length - 1));forkJoinPool.shutdown();System.out.println("最终结果:"+result);System.out.println("活跃线程数:"+forkJoinPool.getActiveThreadCount());System.out.println("窃取任务数:"+forkJoinPool.getStealCount());}
}

输出结果(活跃线程数和窃取任务会根据本地环境和任务执行情况有所变化):

最终结果:5000000050000000
活跃线程数:4
窃取任务数:12

上例中在compute方法里拆分的最小粒度是10个元素,大家可以改成其他的值试下,会发现执行的效率差别很大,所以要注意拆分粒度对性能的影响。

ForkJoinPool内部的队列能够保证执行任务的顺序,至于为什么它能够在有限的线程数量下完成非常多的任务,后面会讲到。

二. 与ThreadPoolExecutor原生线程池的区别

ForkJoinPool和ThreadPoolExecutor都实现了Executor和ExecutorService接口,都可以通过构造函数设置线程数,threadFactory,可以查看ForkJoinPool.makeCommonPool()方法的源码查看通用线程池的构造细节。

在内部结构上我觉得两个线程池最大的区别是在工作队列的设计上,如下图

ThreadPoolExecutor:
在这里插入图片描述
ForkJoinPool:
在这里插入图片描述
主要区别就是:

  • ForkJoinPool每个线程都有自己的队列

  • ThreadPoolExecutor共用一个队列

通过上面的代码示例可以看到使用ForkJoinPool可以在有限的线程数下来完成非常多的具有父子关系的任务,比如使用4个线程来完成超过2000万个任务。但是使用ThreadPoolExecutor是不可能的,因为ThreadPoolExecutor中的线程无法选择优先执行子任务,要完成2000万个具有父子关系的任务时,就需要2000万个线程,这样会导致ThreadPoolExecutor的任务队列撑满或创建的最大线程数把内存撑爆直接gg。

ForkJoinPool最适合计算密集型任务,而且最好是非阻塞任务,之前的一篇文章:Java踩坑记系列之线程池 也说了线程池的不同使用场景和注意事项。

所以ForkJoinPool是ThreadPoolExecutor线程池的一种补充,是对计算密集型场景的加强。

三. 工作窃取的实现原理

第一节的代码示例输出结果显示活跃线程是4个,但却完成了2000万个子任务,窃取任务是12个(窃取数跟拆分层级和计算复杂度有关),这是work steal工作窃取的作用。

ForkJoinPool类中的WorkQueue正是实现工作窃取的队列,javadoc中的注释如下:
在这里插入图片描述
大意是大多数操作都发生在工作窃取队列中(在嵌套类工作队列中)。这些是特殊形式的Deques,主要有push,pop,poll操作。

Deque是双端队列(double ended queue缩写),头部和尾部任何一端都可以进行插入,删除,获取的操作,即支持FIFO(队列)也支持LIFO(栈)顺序。

Deque接口的实现最常见的是LinkedList,除此还有ArrayDeque,ConcurrentLinkedDeque等

工作窃取模式主要分以下几个步骤:

  1. 每个线程都有自己的双端队列

  2. 当调用fork方法时,将任务放进队列头部,线程以LIFO顺序,使用push/pop方式处理队列中的任务

  3. 如果自己队列里的任务处理完后,会从其他线程维护的队列尾部使用poll的方式窃取任务,以达到充分利用CPU资源的目的

  4. 从尾部窃取可以减少同原线程的竞争

  5. 当队列中剩最后一个任务时,通过cas解决原线程和窃取线程的竞争

流程大致如下所示:
工作窃取模式原理
工作窃取便是ForkJoinPool线程池的优势所在,在一般的线程池比如ThreadPoolExecutor中,如果一个线程正在执行的任务由于某种原因无法继续运行,那么该线程会处于等待状态,包括singleThreadPool,fixedThreadPool,cachedThreadPool这几种线程池。

而在ForkJoinPool中,那么线程会主动寻找其他尚未被执行的任务然后窃取过来执行,减少线程等待时间。

JDK8中的并行流(parallelStream)功能是基于ForkJoinPool实现的,另外还有java.util.concurrent.CompletableFuture异步回调future,内部使用的线程池也是ForkJoinPool,有兴趣的同学可以研究下。

文章来源:http://www.javakk.com/215.html

往期精彩:
JVM学习笔记之client server端区别
JVM学习笔记之codeCache
Java踩坑记系列之线程池

互联网一线java开发老兵,工作10年有余,梦想敲一辈子代码,以梦为码,不负韶华!
在这里插入图片描述
扫码关注Java老K,获取更多Java技术干货。

这篇关于线程池ForkJoinPool简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734296

相关文章

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

SpringBoot实现虚拟线程的方案

《SpringBoot实现虚拟线程的方案》Java19引入虚拟线程,本文就来介绍一下SpringBoot实现虚拟线程的方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录什么是虚拟线程虚拟线程和普通线程的区别SpringBoot使用虚拟线程配置@Async性能对比H

MySQL 索引简介及常见的索引类型有哪些

《MySQL索引简介及常见的索引类型有哪些》MySQL索引是加速数据检索的特殊结构,用于存储列值与位置信息,常见的索引类型包括:主键索引、唯一索引、普通索引、复合索引、全文索引和空间索引等,本文介绍... 目录什么是 mysql 的索引?常见的索引类型有哪些?总结性回答详细解释1. MySQL 索引的概念2

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

WinForm跨线程访问UI及UI卡死的解决方案

《WinForm跨线程访问UI及UI卡死的解决方案》在WinForm开发过程中,跨线程访问UI控件和界面卡死是常见的技术难题,由于Windows窗体应用程序的UI控件默认只能在主线程(UI线程)上操作... 目录前言正文案例1:直接线程操作(无UI访问)案例2:BeginInvoke访问UI(错误用法)案例

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab