Hive的UDF开发之向量化表达式(VectorizedExpressions)

2024-02-22 02:04

本文主要是介绍Hive的UDF开发之向量化表达式(VectorizedExpressions),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景

笔者的大数据平台XSailboat的SailWorks模块包含离线分析功能。离线分析的后台实现,包含调度引擎、执行引擎、计算引擎和存储引擎。计算和存储引擎由Hive提供,调度引擎和执行引擎由我们自己实现。调度引擎根据DAG图和调度计划,安排执行顺序,监控执行过程。执行引擎接收调度引擎安排的任务,向Yarn申请容器,在容器中执行具体的任务。

我们的离线分析支持编写Hive的UDF函数,打包上传,并声明使用函数。
在这里插入图片描述
我们通常会通过继承org.apache.hadoop.hive.ql.udf.generic.GenericUDF来自定义自己的UDF函数,再参考Hive实现的内置UDF函数时,经常会看到在它的类名上,有@VectorizedExpressions注解,翻译过来即“向量化表达式”。在此记录一下自己学习到的知识和理解。

官方文档《Vectorized Query Execution》
有以下应该至少知道的点:

  1. 向量化查询缺省是关闭的;
  2. 要能支持向量化查询,数据存储格式必需是ORC格式(我们主要是用CSV格式)。

通常所说的向量化计算主要是从以下几个方面提升效率:

  1. 利用CPU底册指令对向量的运算
  2. 利用多核/多线程的能力进行并发计算

而Hive的向量化执行,主要是代码逻辑聚合并充分利用上下文,减少判断次数,减少对象的访问处理和序列化次数,数据切块并行。

2. 实践

package com.cimstech.udf.date;import java.io.UnsupportedEncodingException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Arrays;import org.apache.hadoop.hive.ql.exec.vector.BytesColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.TimestampColumnVector;
import org.apache.hadoop.hive.ql.exec.vector.VectorExpressionDescriptor;
import org.apache.hadoop.hive.ql.exec.vector.VectorExpressionDescriptor.Descriptor;
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
import org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpression;
import org.apache.hadoop.hive.ql.metadata.HiveException;import com.cimstech.xfront.common.excep.WrapException;
import com.cimstech.xfront.common.text.XString;public class VectorUDFStringToTimstamp extends VectorExpression
{private static final long serialVersionUID = 1L;/*** 列序号*/int mColNum0 ;/*** 时间格式*/String mDateFmt ;transient SimpleDateFormat mSdf ;/*** 必需得有1个无参的构造函数.		<br />* hive会先通过无参构造函数创建一个实例,然后调用getDescriptor()方法,取得描述。* 通过描述知道有哪几列,分别是什么格式的,才知道怎么调用有参构造函数。*/public VectorUDFStringToTimstamp(){super() ;}/*** 有参构造函数的参数要和getDescriptor中取得的描述相对应。* Column类型的输入,在此用int类型列序号表示			<br />* 标量列直接是相应类型即可。						* @param aColNum0* @param aDateFmt* @param aOutputColumnNum*/public VectorUDFStringToTimstamp(int aColNum0 , String aDateFmt, int aOutputColumnNum){super(aOutputColumnNum) ;mColNum0 = aColNum0 ;mDateFmt = aDateFmt ;}@Overridepublic String vectorExpressionParameters(){return getColumnParamString(0 , mColNum0)+ " , val " + mDateFmt ;}private void setDatetime(TimestampColumnVector aTimestampColVector, byte[][] aVector, int aElementNum) throws HiveException{if(mSdf == null)mSdf = new SimpleDateFormat(mDateFmt) ;String dateStr = null ;try{dateStr = new String(aVector[aElementNum] , "UTF-8") ;aTimestampColVector.getScratchTimestamp().setTime(mSdf.parse(dateStr).getTime()) ;}catch (UnsupportedEncodingException e){WrapException.wrapThrow(e) ;return ;		// dead code}catch(ParseException e){throw new HiveException(XString.msgFmt("时间字符串[{}]无法按模式[{}]解析!" , dateStr , mDateFmt)) ;}aTimestampColVector.setFromScratchTimestamp(aElementNum);}@Overridepublic void evaluate(VectorizedRowBatch aBatch) throws HiveException{if (childExpressions != null){evaluateChildren(aBatch);}int n = aBatch.size;if (n == 0)return;BytesColumnVector inputColVector = (BytesColumnVector) aBatch.cols[mColNum0];TimestampColumnVector outputColVector = (TimestampColumnVector) aBatch.cols[outputColumnNum];boolean[] inputIsNull = inputColVector.isNull;boolean[] outputIsNull = outputColVector.isNull;byte[][] vector = inputColVector.vector;if (inputColVector.isRepeating){// 如果是重复的,那么只需要解析第1个就行if (inputColVector.noNulls || !inputIsNull[0]){outputIsNull[0] = false;setDatetime(outputColVector, vector, 0);}else{// 重复,且都是null,那么没有可解析的,如下设置即可outputIsNull[0] = true;outputColVector.noNulls = false;}outputColVector.isRepeating = true;return;}elseoutputColVector.isRepeating = false;if (inputColVector.noNulls) 	// 没有为null的{// selectedInUse为true,表示选中输入中的指定行进行处理。if (aBatch.selectedInUse){int[] sel = aBatch.selected;if (!outputColVector.noNulls)		// 全局被标为了有null值,那么各个为止都需要单独设置是否为null{for (int j = 0; j != n; j++){final int i = sel[j] ;outputIsNull[i] = false;		// 某一行,单独设置不为nullsetDatetime(outputColVector, vector, i);}}else{for (int j = 0; j != n; j++){final int i = sel[j];// 全局被标为了没有null值,那么无需一行行标注非nullsetDatetime(outputColVector, vector, i);}}}else{// 输入是全局没有null值的,输出被全局标为了有null值,那么把输出改过来,改为全局没有null值if (!outputColVector.noNulls)		{Arrays.fill(outputIsNull, false);		// 所有输出都非nulloutputColVector.noNulls = true;			// 改为全局没有null值}for (int i = 0; i != n; i++){setDatetime(outputColVector, vector, i);}}}else	// 输入数据是有null的{outputColVector.noNulls = false;if (aBatch.selectedInUse){int[] sel = aBatch.selected;for (int j = 0; j != n; j++){int i = sel[j] ;outputIsNull[i] = inputIsNull[i] ;if(!outputIsNull[i])setDatetime(outputColVector, vector, i) ;}}else{System.arraycopy(inputIsNull, 0, outputIsNull, 0, n);for (int i = 0; i != n; i++){if(!outputIsNull[i])setDatetime(outputColVector, vector, i) ;}}}}@Overridepublic Descriptor getDescriptor(){return (new VectorExpressionDescriptor.Builder())// 不是过滤,都认为是投影(Projection)。投影是数据库理论中的专业术语// 投影是根据输入,构造输出,填充输出列// 过滤就是设置aBatch.selected.setMode(VectorExpressionDescriptor.Mode.PROJECTION)		.setNumArguments(2).setArgumentTypes(VectorExpressionDescriptor.ArgumentType.STRING, VectorExpressionDescriptor.ArgumentType.STRING).setInputExpressionTypes(VectorExpressionDescriptor.InputExpressionType.COLUMN, VectorExpressionDescriptor.InputExpressionType.SCALAR)		// 标量,指定的字符串常量,就是标量.build();}}

这篇关于Hive的UDF开发之向量化表达式(VectorizedExpressions)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/733811

相关文章

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10