凸优化学习-(十九)深入分析对偶问题

2024-02-21 22:59

本文主要是介绍凸优化学习-(十九)深入分析对偶问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

凸优化学习

学习笔记

一、原问题最优值 p ∗ \text p^* p与与对偶问题最优值 d ∗ \text d^* d分析

1、背景知识

对于一个普通优化问题:
min ⁡ f 0 ( x ) ( P ) s.t. f i ( x ) ≤ 0 i = 1 ⋯ m h i ( x ) = 0 i = 1 ⋯ p \begin{aligned} \min&& f_0(x)&\\ (\text P)\qquad\text{s.t.}&&f_i(x)&\le0\qquad i=1\cdots m\\ &&h_i(x)&=0\qquad i=1\cdots p\\ \end{aligned}\\ min(P)s.t.f0(x)fi(x)hi(x)0i=1m=0i=1p
拉格朗日函数( lagrangian function \text{lagrangian function} lagrangian function):
l ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) l(x,\lambda,v)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^pv_ih_i(x) l(x,λ,v)=f0(x)+i=1mλifi(x)+i=1pvihi(x)
由拉格朗日函数构造的对偶函数( dual function \text{dual function} dual function):
g ( λ , v ) = inf ⁡ x ∈ D l ( x , λ , v ) g(\lambda,v)=\inf_{x\in D}l(x,\lambda,v) g(λ,v)=xDinfl(x,λ,v)
其对偶问题为:
max ⁡ g ( λ , v ) ( D ) s.t. λ ≥ 0 \begin{aligned} \max&& g(\lambda,v)&\\ (\text D)\qquad\text{s.t.}&&\lambda\ \ge0&\\ \end{aligned}\\ max(D)s.t.g(λ,v)λ 0

结论:

  1. 对偶问题是凸优化问题。
  2. d ∗ ≤ p ∗ \text d^*\le\text p^* dp

定义:

  1. p ∗ \text p^* p:原问题最优值。 d ∗ \text d^* d:对偶问题最优值。
  2. 弱对偶 Weak Duality \text{Weak Duality} Weak Duality d ∗ ≤ p ∗ \text d^*\le\text p^* dp时。任何优化问题都是弱对偶。
    强对偶 Strong Duality \text{Strong Duality} Strong Duality d ∗ = p ∗ \text d^*=\text p^* d=p时。凸问题一般是强对偶。
  3. p ∗ − d ∗ \text p^*-\text d^* pd:对偶间隙 Duality gap \text{Duality gap} Duality gap
  4. 相对内部 Relative Interior \text{Relative Interior} Relative Interior
    形如:
    Relint D = { x ∈ D ∣ B ( x , r ) ∩ aff D ∈ D ∃ r ∈ D \text{Relint}D=\lbrace x\in D\mid B(x,r)\cap\text{aff}D\in D\quad\exist r\in D RelintD={xDB(x,r)affDDrD
    其中, B ( x , r ) B(x,r) B(x,r)是以 x x x为中心, r r r为半径的球。 aff D \text{aff}D affD D D D的仿射包。
    在这里插入图片描述
    相当于将集合的边缘去掉,使之成为一个开集。
2、 d ∗ = p ∗ \text d^*=\text p^* d=p的条件

Slater’s Condition \text{Slater's Condition} Slater’s Condition(充分而不必要):
若有凸问题:
min ⁡ f 0 ( x ) s.t. f i ( x ) ≤ 0 i = 1 ⋯ m h i ( x ) = 0 i = 1 ⋯ p \begin{aligned} \min&& f_0(x)&\\ \text{s.t.}&&f_i(x)&\le0\qquad i=1\cdots m\\ &&h_i(x)&=0\qquad i=1\cdots p\\ \end{aligned}\\ mins.t.f0(x)fi(x)hi(x)0i=1m=0i=1p
∃ x ∈ relint D \exist x\in \text{relint}D xrelintD使 f i ( x ) < 0 , i = 1 ⋯ m , h i ( x ) = 0 , i = 1 ⋯ p f_i(x)<0,i=1\cdots m,h_i(x)=0,i=1\cdots p fi(x)<0,i=1m,hi(x)=0,i=1p满足时, d ∗ = p ∗ \text d^*=\text p^* d=p

一般我们见到的凸问题都是满足的,有一些人为构造的凸问题不满足。
当然这个可能还是有些难以满足,所以又有如下一个较弱的条件:
A Weaker Slater’s Condition \text{A Weaker Slater's Condition} A Weaker Slater’s Condition
若不等式约束为仿射时,只要可行域非空,必有 d ∗ = p ∗ \text d^*=\text p^* d=p

线性规划若可行,必有 d ∗ = p ∗ \text d^*=\text p^* d=p
例1: QCQP问题
min ⁡ 1 2 x T P 0 x + q 0 T x + r 0 ( P ) s.t. 1 2 x T p i x + q i x + r i ≤ 0 i = 1 ⋯ m P 0 ∈ S ++ n , p i ∈ S + n \begin{aligned} \min&&\frac 1 2x^T\textbf{P}_{\textbf 0}x+q^T_0x+r_0&\\ (\text P)\qquad\text{s.t.}&&\frac 1 2 x^Tp_ix+q_ix+r_i&\le0\qquad i=1\cdots m\\ && \textbf{P}_{\textbf 0}\in\textbf{S}_{\textbf {++}}^n,p_i\in\textbf{S}_{\textbf +}^n \end{aligned}\\ min(P)s.t.21xTP0x+q0Tx+r021xTpix+qix+riP0S++n,piS+n0i=1m
拉格朗日函数( lagrangian function \text{lagrangian function} lagrangian function):
l ( x , λ ) = 1 2 x T P 0 x + q 0 T x + r 0 + ∑ i = 1 m λ i ( 1 2 x T p i x + q i x + r i ) = 1 2 x ( p 0 + ∑ i = 1 m λ i p i ) x + ( q 0 + ∑ i = 1 m λ i q i ) T x + r 0 + ∑ i = 1 m λ i r i \begin{aligned} l(x,\lambda)&=\frac 1 2x^T\textbf{P}_{\textbf 0}x+q^T_0x+r_0+\sum_{i=1}^m\lambda_i(\frac 1 2 x^Tp_ix+q_ix+r_i)\\ &=\frac 1 2x(p_0+\sum_{i=1}^m\lambda_ip_i)x+(q_0+\sum_{i=1}^m\lambda_iq_i)^Tx+r_0+\sum_{i=1}^m\lambda_ir_i \end{aligned} l(x,λ)=21xTP0x+q0Tx+r0+i=1mλi(21xTpix+qix+ri)=21x(p0+i=1mλipi)x+(q0+i=1mλiqi)Tx+r0+i=1mλiri
对偶函数( dual function \text{dual function} dual function):
g ( λ ) = inf ⁡ x ∈ D l ( x , λ ) = − 1 2 q T ( λ ) p − 1 ( λ ) q ( λ ) + r ( λ ) \begin{aligned} g(\lambda)&=\inf_{x\in D}l(x,\lambda)\\ &=-\frac 1 2q^T(\lambda)p^{-1}(\lambda)q(\lambda)+r(\lambda) \end{aligned} g(λ)=xDinfl(x,λ)=21qT(λ)p1(λ)q(λ)+r(λ)
其对偶问题为:
max ⁡ − 1 2 q T ( λ ) p − 1 ( λ ) q ( λ ) + r ( λ ) ( D ) s.t. λ ≥ 0 \begin{aligned} \max&&-\frac 1 2q^T(\lambda)p^{-1}(\lambda)q(\lambda)+r(\lambda) \\ (\text D)\qquad\text{s.t.}&&\lambda\ \ge0\\ \end{aligned}\\ max(D)s.t.21qT(λ)p1(λ)q(λ)+r(λ)λ 0
显然 d ∗ = p ∗ \text d^*=\text p^* d=p,此时我们验证一下 Slater’s Condition \text{Slater's Condition} Slater’s Condition
对于约束 1 2 x T p i x + q i x + r i ≤ 0 i = 1 ⋯ m \frac 1 2 x^Tp_ix+q_ix+r_i\le0\qquad i=1\cdots m 21xTpix+qix+ri0i=1m q i = 0 , r i = 0 q_i=0,r_i=0 qi=0,ri=0时,怎么样都不满足此约束。
故QCQP问题是一个不满足 Slater’s Condition \text{Slater's Condition} Slater’s Condition d ∗ = p ∗ \text d^*=\text p^* d=p的问题。

个人思考

凸问题的另一良好性质展现了, d ∗ = p ∗ \text d^*=\text p^* d=p,这对于不是很好直接求解的凸问题提出了一种新的求解方法。

纸质笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于凸优化学习-(十九)深入分析对偶问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/733347

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx