凸优化学习-(十九)深入分析对偶问题

2024-02-21 22:59

本文主要是介绍凸优化学习-(十九)深入分析对偶问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

凸优化学习

学习笔记

一、原问题最优值 p ∗ \text p^* p与与对偶问题最优值 d ∗ \text d^* d分析

1、背景知识

对于一个普通优化问题:
min ⁡ f 0 ( x ) ( P ) s.t. f i ( x ) ≤ 0 i = 1 ⋯ m h i ( x ) = 0 i = 1 ⋯ p \begin{aligned} \min&& f_0(x)&\\ (\text P)\qquad\text{s.t.}&&f_i(x)&\le0\qquad i=1\cdots m\\ &&h_i(x)&=0\qquad i=1\cdots p\\ \end{aligned}\\ min(P)s.t.f0(x)fi(x)hi(x)0i=1m=0i=1p
拉格朗日函数( lagrangian function \text{lagrangian function} lagrangian function):
l ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) l(x,\lambda,v)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^pv_ih_i(x) l(x,λ,v)=f0(x)+i=1mλifi(x)+i=1pvihi(x)
由拉格朗日函数构造的对偶函数( dual function \text{dual function} dual function):
g ( λ , v ) = inf ⁡ x ∈ D l ( x , λ , v ) g(\lambda,v)=\inf_{x\in D}l(x,\lambda,v) g(λ,v)=xDinfl(x,λ,v)
其对偶问题为:
max ⁡ g ( λ , v ) ( D ) s.t. λ ≥ 0 \begin{aligned} \max&& g(\lambda,v)&\\ (\text D)\qquad\text{s.t.}&&\lambda\ \ge0&\\ \end{aligned}\\ max(D)s.t.g(λ,v)λ 0

结论:

  1. 对偶问题是凸优化问题。
  2. d ∗ ≤ p ∗ \text d^*\le\text p^* dp

定义:

  1. p ∗ \text p^* p:原问题最优值。 d ∗ \text d^* d:对偶问题最优值。
  2. 弱对偶 Weak Duality \text{Weak Duality} Weak Duality d ∗ ≤ p ∗ \text d^*\le\text p^* dp时。任何优化问题都是弱对偶。
    强对偶 Strong Duality \text{Strong Duality} Strong Duality d ∗ = p ∗ \text d^*=\text p^* d=p时。凸问题一般是强对偶。
  3. p ∗ − d ∗ \text p^*-\text d^* pd:对偶间隙 Duality gap \text{Duality gap} Duality gap
  4. 相对内部 Relative Interior \text{Relative Interior} Relative Interior
    形如:
    Relint D = { x ∈ D ∣ B ( x , r ) ∩ aff D ∈ D ∃ r ∈ D \text{Relint}D=\lbrace x\in D\mid B(x,r)\cap\text{aff}D\in D\quad\exist r\in D RelintD={xDB(x,r)affDDrD
    其中, B ( x , r ) B(x,r) B(x,r)是以 x x x为中心, r r r为半径的球。 aff D \text{aff}D affD D D D的仿射包。
    在这里插入图片描述
    相当于将集合的边缘去掉,使之成为一个开集。
2、 d ∗ = p ∗ \text d^*=\text p^* d=p的条件

Slater’s Condition \text{Slater's Condition} Slater’s Condition(充分而不必要):
若有凸问题:
min ⁡ f 0 ( x ) s.t. f i ( x ) ≤ 0 i = 1 ⋯ m h i ( x ) = 0 i = 1 ⋯ p \begin{aligned} \min&& f_0(x)&\\ \text{s.t.}&&f_i(x)&\le0\qquad i=1\cdots m\\ &&h_i(x)&=0\qquad i=1\cdots p\\ \end{aligned}\\ mins.t.f0(x)fi(x)hi(x)0i=1m=0i=1p
∃ x ∈ relint D \exist x\in \text{relint}D xrelintD使 f i ( x ) < 0 , i = 1 ⋯ m , h i ( x ) = 0 , i = 1 ⋯ p f_i(x)<0,i=1\cdots m,h_i(x)=0,i=1\cdots p fi(x)<0,i=1m,hi(x)=0,i=1p满足时, d ∗ = p ∗ \text d^*=\text p^* d=p

一般我们见到的凸问题都是满足的,有一些人为构造的凸问题不满足。
当然这个可能还是有些难以满足,所以又有如下一个较弱的条件:
A Weaker Slater’s Condition \text{A Weaker Slater's Condition} A Weaker Slater’s Condition
若不等式约束为仿射时,只要可行域非空,必有 d ∗ = p ∗ \text d^*=\text p^* d=p

线性规划若可行,必有 d ∗ = p ∗ \text d^*=\text p^* d=p
例1: QCQP问题
min ⁡ 1 2 x T P 0 x + q 0 T x + r 0 ( P ) s.t. 1 2 x T p i x + q i x + r i ≤ 0 i = 1 ⋯ m P 0 ∈ S ++ n , p i ∈ S + n \begin{aligned} \min&&\frac 1 2x^T\textbf{P}_{\textbf 0}x+q^T_0x+r_0&\\ (\text P)\qquad\text{s.t.}&&\frac 1 2 x^Tp_ix+q_ix+r_i&\le0\qquad i=1\cdots m\\ && \textbf{P}_{\textbf 0}\in\textbf{S}_{\textbf {++}}^n,p_i\in\textbf{S}_{\textbf +}^n \end{aligned}\\ min(P)s.t.21xTP0x+q0Tx+r021xTpix+qix+riP0S++n,piS+n0i=1m
拉格朗日函数( lagrangian function \text{lagrangian function} lagrangian function):
l ( x , λ ) = 1 2 x T P 0 x + q 0 T x + r 0 + ∑ i = 1 m λ i ( 1 2 x T p i x + q i x + r i ) = 1 2 x ( p 0 + ∑ i = 1 m λ i p i ) x + ( q 0 + ∑ i = 1 m λ i q i ) T x + r 0 + ∑ i = 1 m λ i r i \begin{aligned} l(x,\lambda)&=\frac 1 2x^T\textbf{P}_{\textbf 0}x+q^T_0x+r_0+\sum_{i=1}^m\lambda_i(\frac 1 2 x^Tp_ix+q_ix+r_i)\\ &=\frac 1 2x(p_0+\sum_{i=1}^m\lambda_ip_i)x+(q_0+\sum_{i=1}^m\lambda_iq_i)^Tx+r_0+\sum_{i=1}^m\lambda_ir_i \end{aligned} l(x,λ)=21xTP0x+q0Tx+r0+i=1mλi(21xTpix+qix+ri)=21x(p0+i=1mλipi)x+(q0+i=1mλiqi)Tx+r0+i=1mλiri
对偶函数( dual function \text{dual function} dual function):
g ( λ ) = inf ⁡ x ∈ D l ( x , λ ) = − 1 2 q T ( λ ) p − 1 ( λ ) q ( λ ) + r ( λ ) \begin{aligned} g(\lambda)&=\inf_{x\in D}l(x,\lambda)\\ &=-\frac 1 2q^T(\lambda)p^{-1}(\lambda)q(\lambda)+r(\lambda) \end{aligned} g(λ)=xDinfl(x,λ)=21qT(λ)p1(λ)q(λ)+r(λ)
其对偶问题为:
max ⁡ − 1 2 q T ( λ ) p − 1 ( λ ) q ( λ ) + r ( λ ) ( D ) s.t. λ ≥ 0 \begin{aligned} \max&&-\frac 1 2q^T(\lambda)p^{-1}(\lambda)q(\lambda)+r(\lambda) \\ (\text D)\qquad\text{s.t.}&&\lambda\ \ge0\\ \end{aligned}\\ max(D)s.t.21qT(λ)p1(λ)q(λ)+r(λ)λ 0
显然 d ∗ = p ∗ \text d^*=\text p^* d=p,此时我们验证一下 Slater’s Condition \text{Slater's Condition} Slater’s Condition
对于约束 1 2 x T p i x + q i x + r i ≤ 0 i = 1 ⋯ m \frac 1 2 x^Tp_ix+q_ix+r_i\le0\qquad i=1\cdots m 21xTpix+qix+ri0i=1m q i = 0 , r i = 0 q_i=0,r_i=0 qi=0,ri=0时,怎么样都不满足此约束。
故QCQP问题是一个不满足 Slater’s Condition \text{Slater's Condition} Slater’s Condition d ∗ = p ∗ \text d^*=\text p^* d=p的问题。

个人思考

凸问题的另一良好性质展现了, d ∗ = p ∗ \text d^*=\text p^* d=p,这对于不是很好直接求解的凸问题提出了一种新的求解方法。

纸质笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于凸优化学习-(十九)深入分析对偶问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/733347

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co