Netty4.x分析

2024-02-21 19:38
文章标签 分析 netty4

本文主要是介绍Netty4.x分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

官网定义: netty是一个异步、事件驱动的网络应用框架,用于快速开发可维护的、高性能的服务端和客户端程序。

原理分析 

Architecture Overview

网络模型:netty采用了Reactor设计模式,Reactor设计可分三种:

单线程版本,如图:

 

学C的朋友会知道IO多路复用,我感觉和这个Reactor模式差不多,Reactor收到新连接调用acceptor的accept,返回的SocketChannel会注册到Reactor里,当连接可读或者可写时,分发一个handler处理。

多线程版本,如图:

 

处理部分增加了线程池。

Multi-Reactor版本:

 

监听端口注册到mainReactor里,有连接,调用accept,返回的连接注册到subReactor里,subReactor只负责读写,处理部分交给线程池。

Netty采用的方式类似于第三种,Netty3.6里mainReactor对应Boss类,subReactord对应NioWorker类;4.x里是实现EventLoopGroup接口的某个类,如NioEventLoopGroup(multithreaded event loop that handles I/O operation),EventLoopGroup相当于管理EventLoop的线程池,thread数量是可以配置的,echoServer例子中:

42,43行就是boss和worker了,ServerBootstrap是设置服务器的帮助类。

47行用NioServerSocketChannel类说明后面会用它去实例channel来接受incoming连接。

48行option方法可以指定Channel实现的方式。

50行:subReactor监听的channel来事件了,处理方法要通过childHandler方法指定,这是需要我们实现的,childHandler方法的参数是ChannelHandler接口的某个类,然后回调;拿FactorialServerInitializer举例,层次关系如图:

ChannelInitializer用来配置channel,这里要实现抽象类ChannelInitializer里的initChannel方法,意味着要在initChannel方法里配置pipeline。

我们观察EventLoopGroup类,如下图所示:

 

EventExecutor和EventLoopGroup都包含通用的 event loop API;EventLoopGroup有register方法,提供向其注册channel,返回ChannelFuture;

Netty Pipeline:

每个channel都有自己的pipeline,channel创建则对应的pipeline自动创建,下图显示了IO事件如何通过ChannelHandler在ChannelPipeline中处理的:

 

在pipeline里,每个stage运行一个InboundHandler或OutboundHandler,设计过MIPS经典五段pipeline的朋友应该知道锁存器设计,这里对应ChannelHandlerContext,ChannelHandlerContext可以通知ChannelPipeline里下一个ChannelHandler工作,并把事件流传给下一个ChannelHandler,也可以动态修改它所属的ChannelPipeline;

Inbound事件流传递方法:

Outbound事件流传递方法:

 我们看下官网的例子,io.netty.example.factorial 这个包,Pipeline部分(服务端):

 

当Socket.read()发生时,handler处理事件的顺序是:BigIntegerDecoder->FactorialServeHandler

当Socket.write()发生时,handler处理事件的顺序是:NumberEncoder

ChannelInboundHandlerAdapter的方法:

ChannelOutboundHandlerAdapter的方法:

关于Pipeline的一些说明:并不是一个阶段执行完了,才去执行下一个阶段,而是每个Handler有对应的事件处理方法(如上ChannelInboundHandlerAdapter和ChannelOutboundHandlerAdapter中的方法),当这个Handler接收到了某事件,就会调用这个事件处理方法,然后会触发下个Handler对应的事件处理方法,下面用自带的io.netty.example.http.helloworld包验证这个想法(在方法里插了输出):

Socket.read():HttpServerCodec->HttpHelloWorldServerHandler;

Socket.write():HttpServerCodec

Zero Copy:

Netty里用到了ZC技术,这里是介绍ZeroCopy比较好的一篇文章,Netty里FileRegion就是用来支持ZeroCopy的接口,ZC在传输大文件时比较有优势,把大文件指定到Channel上,直接传输,不经过Application层。

 Channel包:

Channel接口封装了socket,提供IO操作(如read,write,connect,bind等)的组建,具体属性、方法可参考文档;

ChannelFuture接口继承了io.netty.util.concurrent.Future,Netty中IO调用均是异步的,调用立即返回,返回结果记录在ChannelFuture里,ChannelFuture随着IO操作的开始而被创建,它的状态可以是完成或者未完成,初始态是未完成,状态如下:

我们可以通过向ChannelFuture里增加和删除ChannelFutureListener(继承GenericFutureListener)(通过addListener(s)、removeListener(s)方法),IO操作完成时触发GenericFutureListener的operationComplete方法执行,这是异步的操作;我们也可以调用ChannelFuture的await方法阻塞Control Flow,直到ChannelFuture完成。

ChannelPipeline已在上文介绍;

Buffer包:

Netty使用自己的buffer API处理字节序列,而不是使用NIO自带的buffer,这样的定制有很多优势吧,官方文档是这么说的:在常见的网络应用中,我们会有一些buffer,它们经常需要组装成一个buffer,netty提供composite buffer,它允许你把已经存在的几个buffer组合起来创建一个virtual buffer,不需要内存拷贝:

还有许多协议的MTU都是不确定的,Netty允许你创建动态大小的buffer,来降低内存开销。

Channel读的数据会写到实现ByteBuf接口的某个类里,ByteBuf里数据满了,会调用handler处理,io.netty.handler.codec包里面会有一些类把package frame,也就是收到的ByteBuf decode成Message,交给handler处理;ByteBuf提供Java nio缓存(ByteBuffer)类似的方法,ByteBuf接口的实现层次图:

buffer包中有一个帮助类Unpooled,用于创建ByteBuf,所有的ByteBuf都是通过ByteBufAllocatore和UnpooledByteBufAllocator分配的,在Unpooled类里,默认的分配器是UnpooledByteBufAllocator,默认分配的ByteBuf类型是UnpooledHeapByteBuf;

HeapByteBuf是在Java堆上分配内存;DirectByteBuf用的是NIO的ByteBuffer,CompositeByteBuf是一个虚拟的buffer,将多种buffer合并成一个buffer;

细心的同学会看到PoolByteBuf和UnpooledByteBuf,PoolByteBuf是4.0新引入的,设计思想借鉴jemalloc(core:混合了slab分配器和buddy分配器),优点是减少内存碎片,Slab分配器是基于对象管理的,分配对象,直接从Slab系统里拿,无需再次初始化,释放对象,则保留在Slab系统里,标记为脏,不需释放,降低GC压力;

 io.netty.handler.codec包:

ByteToMessageCodec类封装了ByteToMessageDecoder和MessageToByteEncoder(都作为Pipeline Handler);我们先观察ByteToMessageDecoder,其可以将流式的字节转化成消息类型,他有一个成员cumulation(ByteBuf类型),收消息时会把收到的msg(ByteBuf类型)传递给cumulation,数据准备好后调用callDecode,callDecode进一步调用decode方法(具体分帧方法),这个方法交给子类实现;MessageToByteEncoder里的write方法同理,write里调用子类实现的encode方法将消息encode成ByteBuf,发送出去。

这篇关于Netty4.x分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732847

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis