Backtrader 量化回测实践(1)—— 架构理解和MACD/KDJ混合指标

2024-02-21 07:44

本文主要是介绍Backtrader 量化回测实践(1)—— 架构理解和MACD/KDJ混合指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Backtrader 量化回测实践(1)—— 架构理解和MACD/KDJ混合指标

按Backtrader的架构组织,整理了一个代码,包括了Backtrader所有的功能点,原来总是使用SMA最简单的指标,现在稍微增加了复杂性,用MACD和KDJ两个指标综合作为操作指标,因此买入卖出操作就比较少,还有就是买入的时候,采用了限价单,整个的交易频率不高,所以图示交易点比较少,也符合多看少动的交易理念。
通过代码结合架构图,可以充分去理解整个Backtrader的功能设计思路,前面一个功能一个功能学习理解,现在把所有的功能综合在一起进行展示,小有成就感。

回测的操作过程 :

  • #1.实例初始化
  • #2.加载数据 Data feeds
  • #3.加载策略 Strategy
  • #4.加载分析器 Analyzers
  • #5.加载观察者 Observers
  • #6.设置仓位管理 Sizers
  • #7.设置佣金管理 Commission
  • #8.设置初始资金
  • #9.启动回测
  • #10.回测结果

1. Backtrader的架构

在这里插入图片描述

2. 代码

import pandas as pd
import numpy as npimport common # get data
import datetime
import backtrader as bt# 定义Observer
class OrderObserver(bt.observer.Observer):lines = ('created', 'expired',)# 做图参数设置plotinfo = dict(plot=True, subplot=True, plotlinelabels=True)# 创建工单 * 标识,过期工单 方块 标识plotlines = dict(created=dict(marker='*', markersize=8.0, color='lime', fillstyle='full'),expired=dict(marker='s', markersize=8.0, color='red', fillstyle='full'))# 处理 Linesdef next(self):for order in self._owner._orderspending:if order.data is not self.data:continueif not order.isbuy():continue# Only interested in "buy" orders, because the sell orders# in the strategy are Market orders and will be immediately# executedif order.status in [bt.Order.Accepted, bt.Order.Submitted]:self.lines.created[0] = order.created.priceelif order.status in [bt.Order.Expired]:self.lines.expired[0] = order.created.price# 定义策略
class MACD_KDJStrategy(bt.Strategy):# 策略参数params = (('highperiod', 9),('lowperiod', 9),('kperiod', 3),('dperiod', 3),('me1period', 12),('me2period', 26),('signalperiod', 9),('limitperc', 1.0), # 限价比例 ,下跌1个百分点才买入,目的可以展示Observer的过期单('valid', 7), # 限价周期('print', False),('counter', 0),  # 计数器)def log(self, txt, dt=None):""" Logging function fot this strategy"""dt = dt or self.datas[0].datetime.date(0)if self.params.print:print("%s, %s" % (dt.isoformat(), txt))def __init__(self):# 初始化全局变量,备用self.dataclose = self.datas[0].closeself.dataopen = self.datas[0].openself.datahigh = self.datas[0].highself.datalow = self.datas[0].lowself.volume = self.datas[0].volumeself.order = Noneself.buyprice = Noneself.buycomm = None# N个交易日内最高价self.highest = bt.indicators.Highest(self.data.high, period=self.p.highperiod)# N个交易日内最低价self.lowest = bt.indicators.Lowest(self.data.low, period=self.p.lowperiod)# 计算rsv值 RSV=(CLOSE- LOW) / (HIGH-LOW) * 100# 如果被除数0 ,为Noneself.rsv = 100 * bt.DivByZero(self.data_close - self.lowest, self.highest - self.lowest, zero=None)# 计算rsv的N个周期加权平均值,即K值self.K = bt.indicators.EMA(self.rsv, period=self.p.kperiod, plot=False)# D值=K值 的N个周期加权平均值self.D = bt.indicators.EMA(self.K, period=self.p.dperiod, plot=False)# J=3*K-2*Dself.J = 3 * self.K - 2 * self.D# MACD策略参数me1 = bt.indicators.EMA(self.data, period=self.p.me1period, plot=True)me2 = bt.indicators.EMA(self.data, period=self.p.me2period, plot=True)self.macd = me1 - me2self.signal = bt.indicators.EMA(self.macd, period=self.p.signalperiod)bt.indicators.MACDHisto(self.data)# 订单通知处理def notify_order(self, order):if order.status in [order.Submitted, order.Accepted]:returnif order.status in [order.Completed]:if order.isbuy():self.log("BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f"% (order.executed.price, order.executed.value, order.executed.comm))self.buyprice = order.executed.priceself.buycomm = order.executed.commself.bar_executed_close = self.dataclose[0]else:self.log("SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f"% (order.executed.price, order.executed.value, order.executed.comm))self.bar_executed = len(self)elif order.status in [order.Canceled, order.Margin, order.Rejected]:self.log("Order Canceled/Margin/Rejected")self.order = None# 交易通知处理def notify_trade(self, trade):if not trade.isclosed:returnself.log("OPERATION PROFIT, GROSS %.2f, NET %.2f" % (trade.pnl, trade.pnlcomm))# 策略执行def next(self):self.log("Close, %.2f" % self.dataclose[0])if self.order:return# 空仓中,开仓买入if not self.position:# 买入基于MACD策略condition1 = self.macd[-1] - self.signal[-1] # 昨天低于signalcondition2 = self.macd[0] - self.signal[0] # 今天高于signal# 买入基于KDJ策略 K值大于D值,K线向上突破D线时,为买进信号。下跌趋势中,K值小于D值,K线向下跌破D线时,为卖出信号。condition3 = self.K[-1] - self.D[-1] # 昨天J低于Dcondition4 = self.K[0] - self.D[0]   # 今天J高于Dif condition1 < 0 and condition2 > 0 and condition3 < 0 and condition4 > 0 :self.log('BUY CREATE, %.2f' % self.dataclose[0])plimit = self.data.close[0] * (1.0 - self.p.limitperc / 100.0)valid = self.data.datetime.date(0) + datetime.timedelta(days=self.p.valid)self.log('BUY CREATE, %.2f' % plimit)# 限价购买self.buy(exectype=bt.Order.Limit, price=plimit, valid=valid)else:# 卖出基于MACD策略condition1 = self.macd[-1] - self.signal[-1]condition2 = self.macd[0] - self.signal[0]# 卖出基于KDJ策略condition3 = self.K[-1] - self.D[-1]condition4 = self.D[0] - self.D[0]if condition1 > 0 and condition2 < 0 and (condition3 > 0 or condition4 < 0):self.log("SELL CREATE, %.2f" % self.dataclose[0])self.order = self.sell()def start(self):# 从0 开始# self.params.counter += 1self.log('Strategy start %s' % self.params.counter)def nextstart(self):self.params.counter += 1self.log('Strategy nextstart %s' % self.params.counter)def prenext(self):self.params.counter += 1self.log('Strategy prenext  %s' % self.params.counter)def stop(self):self.params.counter += 1self.log('Strategy stop  %s' % self.params.counter)self.log('Ending Value %.2f' % ( self.broker.getvalue()))if __name__ == "__main__":tframes = dict(days=bt.TimeFrame.Days,weeks=bt.TimeFrame.Weeks,months=bt.TimeFrame.Months,years=bt.TimeFrame.Years)#1.实例初始化cerebro = bt.Cerebro()# 2.加载数据 Data feeds# 加载数据到模型中,由dataframe 到 Lines 数据类型,查询10年数据到dataframestock_df = common.get_data('000858.SZ','2010-01-01','2021-01-01')# 加载5年数据进行分析start_date = datetime.datetime(2016, 1, 1)  # 回测开始时间end_date = datetime.datetime(2020, 12, 31)  # 回测结束时间# bt数据转换data = bt.feeds.PandasData(dataname=stock_df, fromdate=start_date, todate=end_date)# bt加载数据cerebro.adddata(data)#3.加载策略 Strategycerebro.addstrategy(MACD_KDJStrategy)#4.加载分析器 Analyzerscerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='mysharpe')cerebro.addanalyzer(bt.analyzers.DrawDown,_name = 'mydrawdown')cerebro.addanalyzer(bt.analyzers.AnnualReturn,_name = 'myannualreturn')#5.加载观察者 Observerscerebro.addobserver(OrderObserver)#6.设置仓位管理 Sizerscerebro.addsizer(bt.sizers.FixedSize, stake=100)#7.设置佣金管理 Commissioncerebro.broker.setcommission(commission=0.002)#8.设置初始资金cerebro.broker.setcash(100000)print("Starting Portfolio Value: %.2f" % cerebro.broker.getvalue())#9.启动回测checkstrats = cerebro.run()#数据源0 返回值处理checkstrat = checkstrats[0]#10.回测结果print("Final Portfolio Value: %.2f" % cerebro.broker.getvalue())print('夏普率:')for k, v in checkstrat.analyzers.mysharpe.get_analysis().items():print(k, ':', v)print('最大回测:')for k, v in checkstrat.analyzers.mydrawdown.get_analysis()['max'].items():print('max ', k, ':', v)print('年化收益率:')for year, ann_ret in checkstrat.analyzers.myannualreturn.get_analysis().items():print(year, ':', ann_ret)#11.回测图示cerebro.plot()

3.输出

Starting Portfolio Value: 100000.00
Final Portfolio Value: 109320.46
夏普率:
sharperatio : 0.24167200140493122
最大回测:
max  len : 323
max  drawdown : 4.220391363516371
max  moneydown : 4426.0
年化收益率:
2016 : 0.0
2017 : 0.03684790760000012
2018 : -0.027969386625977366
2019 : 0.07656254422728326
2020 : 0.007551367384477592

4.图示

在这里插入图片描述
做个有趣的猜测,如果对市场上所有的stock代码按程序的遍历一遍,不知道盈亏情况,比例如何?另外一个关心的就是消耗时间?

如果大家有兴趣知道结果,点赞收藏超过100 ,就做个Excel ,给大家看看效果。

仅供学习参考,不做交易操作依据。

这篇关于Backtrader 量化回测实践(1)—— 架构理解和MACD/KDJ混合指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/731035

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1