pytorch-textregression,中文文本回归实践,支持多值输出

本文主要是介绍pytorch-textregression,中文文本回归实践,支持多值输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pytorch-textregression,中文文本回归实践,支持多值输出

pytorch-textregression是一个以pytorch和transformers为基础,专注于中文文本回归的轻量级自然语言处理工具,支持多值回归等。

目录

  • 数据
  • 使用方式
  • paper
  • 参考

项目地址

  • pytorch-textregression: https://github.com/yongzhuo/Pytorch-NLU/pytorch_textregression

数据格式

1. 文本回归  (txt格式, 每行为一个json):1.1 单个得分格式:
{"text": "你安静!", "label": [1]}
{"text": "斗牛场是多么欢乐阿!", "label": [1]}
{"text": "今天你不必做作业。", "label": [0]}
{"text": "他醒来时,几乎无法说话。", "label": [0]}
{"text": "在那天边隐约闪亮的不就是黄河?", "label": [1]}1.2 多个得分格式:
{"text": "你安静!", "label": [1,0]}
{"text": "斗牛场是多么欢乐阿!", "label": [1,0]}
{"text": "今天你不必做作业。", "label": [0,0]}
{"text": "他醒来时,几乎无法说话。", "label": [0,0]}
{"text": "在那天边隐约闪亮的不就是黄河?", "label": [1,0]}

使用方式

更多样例sample详情见test/tr目录

训练  python tet_tr_base_train.py
预测  python tet_tr_base_predict.py
    1. 需要配置好预训练模型目录, 即变量 pretrained_model_dir、pretrained_model_name_or_path、idx等;
    1. 需要配置好自己的语料地址, 即字典 model_config[“path_train”]、model_config[“path_dev”]
    1. cd到该脚本目录下运行普通的命令行即可, 例如: python trRun.py , python trPredict.py

文本回归(TR), Text-Regression

# 适配linux
import platform
import json
import sys
import os
path_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
path_sys = os.path.join(path_root, "pytorch_nlu", "pytorch_textregression")
sys.path.append(path_sys)
print(path_root)
# 分类下的引入, pytorch_textclassification
from trConfig import model_config
from trTools import get_current_time# 训练-验证语料地址, 可以只输入训练地址
path_corpus = path_root + "/corpus/text_regression/negative_sentence"
path_train = os.path.join(path_corpus, "train.json")
path_dev = os.path.join(path_corpus, "dev.json")
model_config["evaluate_steps"] = evaluate_steps  # 评估步数
model_config["save_steps"] = save_steps  # 存储步数
model_config["path_train"] = path_train
model_config["path_dev"] = path_dev# 预训练模型适配的classmodel_type = ["BERT", "ERNIE", "BERT_WWM", "ALBERT", "ROBERTA", "XLNET", "ELECTRA"]pretrained_model_name_or_path = {"BERT_WWM":  "hfl/chinese-bert-wwm-ext","ROBERTA":  "hfl/chinese-roberta-wwm-ext","ALBERT":  "uer/albert-base-chinese-cluecorpussmall","XLNET":  "hfl/chinese-xlnet-mid","ERNIE":  "nghuyong/ernie-1.0-base-zh",# "ERNIE": "nghuyong/ernie-3.0-base-zh","BERT":  "bert-base-chinese",# "BERT": "hfl/chinese-macbert-base",}
idx = 1  # 选择的预训练模型类型---model_type
model_config["pretrained_model_name_or_path"] = pretrained_model_name_or_path[model_type[idx]]
model_config["model_save_path"] = "../output/text_regression/model_{}".format(model_type[idx])
model_config["model_type"] = model_type[idx]# os.environ["CUDA_VISIBLE_DEVICES"] = str(model_config["CUDA_VISIBLE_DEVICES"])# main
lc = TextRegression(model_config)
lc.process()
lc.train()

Reference

For citing this work, you can refer to the present GitHub project. For example, with BibTeX:

@software{Pytorch-NLU,url = {https://github.com/yongzhuo/Pytorch-NLU},author = {Yongzhuo Mo},title = {Pytorch-NLU},year = {2021}

*希望对你有所帮助!

这篇关于pytorch-textregression,中文文本回归实践,支持多值输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730800

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方