实例分析AnnexB格式h264流startcode

2024-02-21 02:04

本文主要是介绍实例分析AnnexB格式h264流startcode,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们知道,h264 流格式有两种:avcC与AnnexB。

avcC 就是在 NALU 前面写上几个字节,这几个字节组成一个整数(大端字节序)这个整数表示了整个 NALU 的长度。在读取的时候,先把这个整数读出来,拿到这个 NALU 的长度,然后按照长度读取整个 NALU,我们不妨把这几个字节叫做NALU Body Length。

AnnexB 就是在一个 NALU 前面加上三个或者四个字节,这些字节的内容是 0 0 0 1 或者 0 0 1。当我们读取一个 H264 流的时候,一旦遇到 0 0 0 1 或者 0 0 1,我们就认为一个新的 NALU 开始了,因此,这些用来做分隔符的字节,一般也被称为 start code。

所以,接下来重点分析下startcode。

startcode的有两种形式

3字节的0x000001和4字节的0x00000001

为什么需要startcode?

主要是为了将相邻两个NALU划分开,让他们有一个界线,方便解码,比如将h264的数据存储在一个文件当中,解码器无法从数据流中分别每个NALU的起始位置。

在编码时,每个NALU前面添加startcode(占4字节0x00000001或者3字节0x000001),这里有人会想到万一中间出现0x000001怎么办呢,h264有个防止竞争的机制,在编码完一个NAL时,如果出现有连续两个0x00字节,就在后面插入一个0x03(解码的时候这个0x03会被丢弃)。

startcode占4字节还是3字节?

实际上startcode只占3字节,4字节的startcode = zero_byte + start_code_prefix_one_3bytes,就是说无论啥时候其实startcode都是3字节,关键就在于zero_byte

  1. 包含SPS,PPS的NALU前面要加zero_byte(4字节)。
  2. 当一帧被分为多个slice时,首个NALU前面要加zero_byte(4字节)。也就是,当一个完整的帧被编为多个slice的时候,除掉第一个NALU,剩下的都用3字节的,其余的都是4字节,这个在后面的实例分析中可以得到验证。

比如给定一组frame:

SPS            (4字节头)
PPS            (4字节头)
SEI            (4字节头)
I0(slice0)4字节头)
I0(slice1)3字节头)
P1(slice0)4字节头)
P1(slice1)3字节头)
P2(slice0)4字节头)
P2(slice1)3字节头)
  • I0(slice0)是序列第一帧(I帧)的第一个slice,是当前Access Unit的首个nalu,所以是4字节头。而I0(slice1)表示第一帧的第二个slice,所以是3字节头。
  • P1(slice0) 、P1(slice1)同理。

h264stream文件实例分析

0x00000000的地址开始是SPS,这时候startcode是0x00000001,4个字节

在这里插入图片描述

0x00000019的地址开始是PPS,这时候startcode是0x00000001,4个字节

在这里插入图片描述

0x00000021的地址开始是SEI,这时候startcode是0x000001,3个字节

在这里插入图片描述

0x00000281的地址开始是第一个I帧的slice 0,这时候startcode是0x000001,3个字节

在这里插入图片描述
0x000002CE的地址开始是第一个I帧的slice 1,这时候startcode是0x00000001,3个字节

在这里插入图片描述

0x00000310的地址开始是接着的P帧的slice 0,这时候startcode是0x0000000001,4个字节

在这里插入图片描述
0x000006A4的地址开始是接着的P帧的slice 1,这时候startcode是0x00000001,3个字节

在这里插入图片描述
0x000008BA的地址开始是接着的下一个P帧的slice 0,这时候startcode是0x0000000001,4个字节

在这里插入图片描述
依次往后分析,每一个完整的帧开始的时候startcode都是4个字节的startcode,每个帧的slice使用3个字节的startcode分隔。

对比ffprobe生成信息

ffprobe生成frame信息文件videoframes.info:

ffprobe -show_frames -select_streams v -of xml 256x144.h264 > videoframes.info

简化这个xml文件内容后如下:

<?xml version="1.0" encoding="UTF-8"?>
<ffprobe><frames><frame pkt_pos="0" pkt_size="784" pict_type="I"><side_data_list><side_data side_data_type="H.26[45] User Data Unregistered SEI message"/></side_data_list></frame><frame pkt_pos="784" pkt_size="1450"   pict_type="P" coded_picture_number="1" /><frame pkt_pos="2234" pkt_size="2951"  pict_type="P" coded_picture_number="2" /><frame pkt_pos="5185" pkt_size="3647"  pict_type="P" coded_picture_number="3" /><frame pkt_pos="8832" pkt_size="644"   pict_type="P" coded_picture_number="4" /><frame pkt_pos="9476" pkt_size="952"   pict_type="P" coded_picture_number="5" /><frame pkt_pos="10428" pkt_size="981"  pict_type="P" coded_picture_number="6" /><frame pkt_pos="11409" pkt_size="678"  pict_type="P" coded_picture_number="7" /><frame pkt_pos="12087" pkt_size="1003" pict_type="P" coded_picture_number="8" /><frame pkt_pos="13090" pkt_size="415"  pict_type="P" coded_picture_number="9" /><frame pkt_pos="13505" pkt_size="772"  pict_type="P" coded_picture_number="10"/><frame pkt_pos="14277" pkt_size="799"  pict_type="P" coded_picture_number="11"/><frame pkt_pos="15076" pkt_size="424"  pict_type="P" coded_picture_number="12"/><frame pkt_pos="15500" pkt_size="466"  pict_type="P" coded_picture_number="13"/><frame pkt_pos="15966" pkt_size="745"  pict_type="P" coded_picture_number="14"/></frames>
</ffprobe>

从这个结果对比后面的代码分析,ffprobe拿到的frame 0的信息,packet size是784,刚好是从起始地址到I帧结束的大小,0x00000310换算成10进制就是784,对比流的16进制和后面代码对stream的解析来看,ffprobe给出的信息第一个frame的实际上包含了SPSPPSSEII帧数据,在SPS和PPS前面的startcode是4个字节,而后面的程序解析,frame#0是SPS,frame#1是包含PPS和SEI的I帧。

在这里插入图片描述

代码解析startcode

后面的这段代码解析前面的h264stream文件,然后打印每一个frame的大小,通过输出信息来看,和前面的xml统计信息符合,区别就是Frame 0和Frame 1的输出分别是SPSPPS的4个字节的startcode开始的帧,这个和前面用工具分析的截图完全一致。

Frame 0: 25 bytes
Frame 1: 759 bytes
Frame 2: 1450 bytes
Frame 3: 2951 bytes
Frame 4: 3647 bytes
Frame 5: 644 bytes
Frame 6: 952 bytes
Frame 7: 981 bytes
Frame 8: 678 bytes
Frame 9: 1003 bytes
Frame 10: 415 bytes
Frame 11: 772 bytes
Frame 12: 799 bytes
Frame 13: 424 bytes
Frame 14: 466 bytes
#include <stdint.h>
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>#define START_CODE_PREFIX_LENGTH 3
#define START_CODE_LENGTH 4int main(int argc, char *argv[])
{FILE *fp = fopen(argv[1], "rb");if (!fp) {printf("Failed to open file\n");return -1;}// Allocate buffer for reading fileint buffer_size = 1024 * 1024;uint8_t *buffer = (uint8_t *)malloc(buffer_size);// Allocate buffer for storing frame dataint frame_size = buffer_size;uint8_t *frame = (uint8_t *)malloc(frame_size);int frame_count = 0;int bytes_read = 0;int frame_start = 0;int frame_end = 0;int frame_length = 0;int start_code_prefix_found = 0;while ((bytes_read = fread(buffer, 1, buffer_size, fp)) > 0){for (int i = 0; i < bytes_read; i++) {if (!start_code_prefix_found) {/** 这里用001来判断的好处是,当发现后面的四个字节是0001的时候,说明frame结* 束,这时候buffer[i]的位置已经是下一个0001的0位置,下次循环进来的时候* buffer指向的位置刚好是001,因为有i++运算,已经去掉了前导0* (leading_zero_8bits)** 如果是0001,那么经过i++,start_code_prefix_found的位置就是下下一个* startcode的位置了。*/if (i < bytes_read - START_CODE_PREFIX_LENGTH) {if (buffer[i] == 0x00 &&buffer[i+1] == 0x00 &&buffer[i+2] == 0x01) {start_code_prefix_found = 1;frame_start = i + START_CODE_PREFIX_LENGTH;}}} else {if (i < bytes_read - START_CODE_LENGTH) {if (buffer[i] == 0x00 &&buffer[i+1] == 0x00 &&buffer[i+2] == 0x00 &&buffer[i+3] == 0x01) {start_code_prefix_found = 0;frame_end = i;frame_length = frame_end - frame_start;if (frame_length > frame_size) {frame_size = frame_length;frame = (uint8_t *)realloc(frame, frame_size);}memcpy(frame, buffer + frame_start, frame_length);printf("Frame %d: %d bytes\n", frame_count++, frame_length + START_CODE_LENGTH);}} else if (i == bytes_read-1) {frame_length = bytes_read - frame_start;memcpy(frame, buffer + frame_start, frame_length);printf("Frame %d: %d bytes\n", frame_count++, frame_length + START_CODE_LENGTH);}}}}fclose(fp);free(buffer);free(frame);return 0;
}

这篇关于实例分析AnnexB格式h264流startcode的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730256

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

PyQt6 键盘事件处理的实现及实例代码

《PyQt6键盘事件处理的实现及实例代码》本文主要介绍了PyQt6键盘事件处理的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录一、键盘事件处理详解1、核心事件处理器2、事件对象 QKeyEvent3、修饰键处理(1)、修饰键类

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结