RisingWave分布式SQL流处理数据库调研

2024-02-21 00:36

本文主要是介绍RisingWave分布式SQL流处理数据库调研,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

RisingWave是一款分布式SQL流处理数据库,旨在帮助用户降低实时应用的的开发成本。作为专为云上分布式流处理而设计的系统,RisingWave为用户提供了与PostgreSQL类似的使用体验,官方宣称具备比Flink高出10倍的性能(指throughput)以及更低的成本。RisingWave开发只需要关注SQL开发,而不需要像Flink那样去关注

  • RisingWave与Flink不同的是,RisingWave既可以做流处理也可以存储;而Flink只是流处理框架,而不能存储数据,计算后的数据需要存储到外部系统中。官方宣称可以完全替代FlinkSQL。
  • RisingWave与批数据库不同的是,RisingWave可以做流处理,按预定义逻辑实时处理数据,官网宣称可以做到流批一体,批数据库只能处理批数据。

使用场景

RisingWave 的强项是流处理,底层存储为行存,更加适合对已存储的数据高并发点查,而并非全表扫描。RisingWave 的主要使用场景包括了监控、报警、实时动态报表、流式 ETL、机器学习特征工程等。其已经运用到金融交易、制造业、新媒体、物流等领域。
但是,RisingWave 不适合做分析型随机查询。为支持分析型随机查询,用户还需将数据导入到实时分析数据库中进行操作。不少用户将 RisingWave 与 ClickHouse、Apache Doris 等实时分析数据库组合使用:他们使用 RisingWave 做流计算,同时使用实时分析数据库进行分析型随机查询。RisingWave 已经支持到sink ClickHouse、Apache Doris等OLTP中,具体可以参考RisingWave Sink

注意:
RisingWave 不支持读写事务处理,但其支持只读事务。在生产中,使用 RisingWave 的最佳实践是将 RisingWave 放在事务型数据库的下游。RisingWave 通过 CDC 从事务型数据库中读取已经被序列化过的数据。

RisingWave 应用

部署

RisingWave 单机试玩模式

docker run -itd \
-p 4566:4566 \
-p 5691:5691 \
--privileged \
--name=risingwave \
risingwavelabs/risingwave:latest playground

RisingWave 单机 Docker Compose 部署模式(测试推荐这种模式部署,以下测试基于此种模式)

clone the risingwave repository.

git clone https://github.com/risingwavelabs/risingwave.git

进入docker目录

cd docker

启动RisingWave集群

#使用MinIO存储状态后端,standalone模式启动
export RW_IMAGE=risingwavelabs/risingwave:latest
export ENABLE_TELEMETRY=true
docker compose up -d

安装postgresql客户端

由于RisingWave兼容postgresql协议,所以通过postgresql客户端可以直接操作RisingWave
安装postgresql客户端

yum install -y postgresql

使用 psql 连接

psql -h localhost -p 4566 -d dev -U root

启动mysql并开启binlog

  • 启动mysql
# 查看详细默认配置docker run -it --rm mysql:5.7 --verbose --help#启动mysql server
docker run -d \
--name mysql5.7 \
--restart=always \
-p 3306:3306 \
-e MYSQL_ROOT_PASSWORD=123456 \
-v /data/mysql5.7/data:/var/lib/mysql \#数据文件
-v /data/mysql5.7/conf:/etc/mysql/conf.d \#配置文件
-v /data/mysql5.7/log:/var/log \#日志文件
mysql:5.7 \
--character-set-server=utf8mb4 \
--collation-server=utf8mb4_unicode_ci \
--log-bin=/var/lib/mysql/mysql-bin \#开启binlog配置
--server-id=2 #开启binlog配置
  • 链接mysql

docker exec -it mysql5.7 mysql -h127.0.0.1 -P3306 -p’123456’

  • 验证是否开启 binlog

show variables like ‘%log_bin%’;

  • 授权
--授权RisingWave作为slave访问mysql binlog
grant RELOAD, SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT, SELECT on *.* to 'root'@'%' IDENTIFIED BY '123456';
--grant ALL PRIVILEGES on db01.* to 'root'@'%' IDENTIFIED BY '123456';
flush  privileges;
--取消授权,如有需要
REVOKE  GRANT OPTION on *.* FROM 'root'@'%';
REVOKE  ALL PRIVILEGES on *.* FROM 'root'@'%';
REVOKE  ALL PRIVILEGES on db01.* FROM 'root'@'%';
flush  privileges;
--查看授权
show grants for root@'%';

部署kafka

  • 启动kafka
# step-1
docker run -d --name zookeeper -p 2181:2181 wurstmeister/zookeeper:latest
# step-2
# 启动Kafka,将以下的俩个192.168.1.100换为本身的IP地址bash
docker run  -d \
--name kafka \
--restart=always \
-p 8092:8092 \
-e KAFKA_BROKER_ID=1 \
-e KAFKA_ZOOKEEPER_CONNECT=192.168.1.100:2181/kafka \
-e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.1.100:8092 \
-e KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:8092 \
-t wurstmeister/kafka
  • 与kafka交互
#list
docker run -it --rm wurstmeister/kafka kafka-topics.sh --bootstrap-server 192.168.1.100:8092 --list
#create topic
docker run -it --rm wurstmeister/kafka kafka-topics.sh --bootstrap-server 192.168.1.100:8092 --create --replication-factor 1 --partitions 1 --topic test2
#producer
docker run -it --rm wurstmeister/kafka kafka-console-producer.sh --bootstrap-server 192.168.1.100:8092 --topic test1
#consumer
docker run -it --rm wurstmeister/kafka kafka-console-consumer.sh --bootstrap-server 192.168.1.100:8092 --topic test1
  • 或通过kcat与kafka交互
docker pull edenhill/kcat:1.7.1
docker run -it --rm edenhill/kcat:1.7.1 kcat -b 192.168.1.100:8092 -t test_sink_topic -C -J
docker run -it --rm edenhill/kcat:1.7.1 kcat -b 192.168.1.100:8092 -t test_sink_topic -C

RisingWave 使用demo

  1. 数据导出sink demo
-- create table
CREATE TABLE t1 (v1 int, v2 int) 
WITH (connector = 'datagen',fields.v1.kind = 'sequence',fields.v1.start = '1',fields.v2.kind = 'random',fields.v2.min = '-10',fields.v2.max = '10',fields.v2.seed = '1',datagen.rows.per.second = '10') ROW FORMAT JSON;
-- create sink
CREATE SINK test_sink_1
FROM t1 
WITH (properties.bootstrap.server = '192.168.1.100:8092',topic = 'test_sink_topic',connector = 'kafka',primary_key = 'v1'
)
FORMAT UPSERT ENCODE JSON;

查看kafka sink 结果

docker run -it --rm edenhill/kcat:1.7.1 kcat -b 192.168.1.100:8092 -t test_sink_topic -C -J

  1. 连接器 source
--source 连接器
CREATE SOURCE IF NOT EXISTS source_1 (v1 integer,v2 integer,
)
WITH (connector='kafka',topic='test_sink_topic',properties.bootstrap.server='192.168.1.100:8092',scan.startup.mode='latest',
) FORMAT PLAIN ENCODE JSON;
-- table连接器
CREATE TABLE IF NOT EXISTS table_1 (v1 integer,v2 integer,
)
WITH (connector='kafka',topic='test_sink_topic',properties.bootstrap.server='192.168.1.100:8092',scan.startup.mode='latest',
) FORMAT PLAIN ENCODE JSON;
  1. Change Data Capture (CDC) 直连 MySQL CDC
    --mysql ddl:create database db01;use db01;CREATE TABLE orders (order_id int(11) NOT NULL AUTO_INCREMENT,price decimal(11),PRIMARY KEY (order_id));-- risingwave ddlCREATE TABLE orders (order_id int,price decimal,PRIMARY KEY (order_id)) WITH (connector = 'mysql-cdc',hostname = '192.168.1.100',port = '3306',username = 'root',password = '123456',database.name = 'db01',table.name = 'orders',);--mysql dmlinsert into orders(price) values(12),(10),(23);insert into orders(price) values(12),(10);update orders set price=100  where order_id=1;delete from orders where order_id=3;-- risingwave验证数据select * from orders ;
  1. 直接导出物化视图/表数据 (CREATE SINK FROM)
CREATE TABLE t11 (v1 int, v2 int) 
WITH (connector = 'datagen',fields.v1.kind = 'sequence',fields.v1.start = '1',fields.v2.kind = 'random',fields.v2.min = '-10',fields.v2.max = '10',fields.v2.seed = '1',datagen.rows.per.second = '10') ROW FORMAT JSON;create materialized view mv_t11 as select count(*) from t11;CREATE SINK sink1 FROM mv_t11 
WITH (connector='kafka',properties.bootstrap.server='192.168.1.100:8092',topic='t_sink1'
)
FORMAT PLAIN ENCODE JSON(force_append_only='true'
);

check结果

docker run -it --rm edenhill/kcat:1.7.1 kcat -b 192.168.1.100:8092 -t t_sink1 -C -J

  1. 导出 Query 的数据(CREATE SINK AS)
CREATE TABLE t11 (v1 int, v2 int) 
WITH (connector = 'datagen',fields.v1.kind = 'sequence',fields.v1.start = '1',fields.v2.kind = 'random',fields.v2.min = '-10',fields.v2.max = '10',fields.v2.seed = '1',datagen.rows.per.second = '10') ROW FORMAT JSON;CREATE SINK sink2 AS 
SELECT avg(v1) as avg_v1, avg(v2) as avg_v2 
FROM t1
WITH (connector='kafka',properties.bootstrap.server='192.168.1.100:8092',topic='t_sink2'
)
FORMAT PLAIN ENCODE JSON(force_append_only='true'
);

check结果

docker run -it --rm edenhill/kcat:1.7.1 kcat -b 192.168.1.100:8092 -t t_sink1 -C -J

总结

RisingWave 提供与 PostgreSQL 兼容的标准SQL接口。用户可以像使用 PostgreSQL 一样处理数据流。屏蔽了实时处理底层需要遇到的一些技术细节(状态存储,数据一致性,分布式集群扩展等),供应用方快速的开发实时数据流,进行流式ETL。具有以下特性:同步的实时性(可以保证实时的新鲜度,doris等OLAP引擎采用异步实时)、强一致性(doris等OLAP引擎仅提供最终一致性)、高可用、高并发、流处理语义、资源隔离。可以应用在一些数据看版,监控,实时指标等场景。

相关文章

github 仓库
官方文档
中文文档
创始人知乎主页
Slack

这篇关于RisingWave分布式SQL流处理数据库调研的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/730052

相关文章

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

MySQL 安装配置超完整教程

《MySQL安装配置超完整教程》MySQL是一款广泛使用的开源关系型数据库管理系统(RDBMS),由瑞典MySQLAB公司开发,目前属于Oracle公司旗下产品,:本文主要介绍MySQL安装配置... 目录一、mysql 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL5.1