机器学习----SVM(2)从原始问题到对偶问题的转换

2024-02-20 19:32

本文主要是介绍机器学习----SVM(2)从原始问题到对偶问题的转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SVM的水真是太深了,只能一点一点的解决了,今天这篇博客简单讲解SVM的目标函数从原始问题到对偶问题的转换。在这里再给大家一个大牛的博客链接:http://blog.pluskid.org/?p=685

1、转化对偶问题

上篇博客中我们得到的目标函数:

1)

我们在优化时喜欢求最小值,将上式转化正等价的求最小值如下:

      (2)

对于(2)式,这是一个凸二次规划问题,我们可以使用拉格朗日乘数法进行优化。    

    (3)

(3)式中的是拉格朗日乘子,然后我们令:        

            (4)

为什么能这样假设呢?如果约束条件都满足,(4)式的最优值就是,和目标函数一样。

因此我们可以直接求(4)式的最小值,等价于求原目标函数。因此目标函数变成如下:

(5)

将求最大值和最小值交换位置后

(6)

交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用来表示。而且有d*≤p*,在满足某些条件的情况下,这两者相等,这个时候就可以通过求解对偶问题来间接地求解原始问题。为什么要这样转换呢?此处借他人之言,之所以从minmax的原始问题,转化为maxmin的对偶问题,一者因为是的近似解,二者,转化为对偶问题后,更容易求解。下面可以先求L 对w、b的极小,再求L 对的极大。


2、求解对偶问题

回顾一下上面的目标函数L

(7)

这是一个拉格朗日乘法优化方法得到的,由于要求

(8)

先求最大值,后求最小值,求最小值时,将a看成常量,那么L就是w,b的函数了。极值在导数为0的点处取到,因此分
别求L对w,b的导数,并令其为0,得如下结果。

(9)

将(9)式带入(7)(为什么呢?)得到:

(10)

为什么能将(9)式带入(7)式呢?因为极值在导数为零的点处取到,因此(9)式符合(7)式取极值时w,b的取值。(10)式就是(7)式的最小值了,求完最小值,然后求最大值。求对的极大,即是关于对偶问题的最优化问题。经过上面第一个步骤的求w和b,得到的拉格朗日函数式子已经没有了变量w,b,只有。从上面的式子得到:

(11)

(11)式是关于a的式子,如果能求出a,则可以根据(7)式求出w。求出w后可以根据前面函数距离等于1的假设求出b


怎样求a呢?这需要后面的核函数和松弛量的知识,利用SMO算法求解,下篇博客继续介绍核函数。
最后给大家附一张我的推到图,是上面内容的简化版本。



这篇关于机器学习----SVM(2)从原始问题到对偶问题的转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/729305

相关文章

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos