机器学习----SVM(2)从原始问题到对偶问题的转换

2024-02-20 19:32

本文主要是介绍机器学习----SVM(2)从原始问题到对偶问题的转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SVM的水真是太深了,只能一点一点的解决了,今天这篇博客简单讲解SVM的目标函数从原始问题到对偶问题的转换。在这里再给大家一个大牛的博客链接:http://blog.pluskid.org/?p=685

1、转化对偶问题

上篇博客中我们得到的目标函数:

1)

我们在优化时喜欢求最小值,将上式转化正等价的求最小值如下:

      (2)

对于(2)式,这是一个凸二次规划问题,我们可以使用拉格朗日乘数法进行优化。    

    (3)

(3)式中的是拉格朗日乘子,然后我们令:        

            (4)

为什么能这样假设呢?如果约束条件都满足,(4)式的最优值就是,和目标函数一样。

因此我们可以直接求(4)式的最小值,等价于求原目标函数。因此目标函数变成如下:

(5)

将求最大值和最小值交换位置后

(6)

交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用来表示。而且有d*≤p*,在满足某些条件的情况下,这两者相等,这个时候就可以通过求解对偶问题来间接地求解原始问题。为什么要这样转换呢?此处借他人之言,之所以从minmax的原始问题,转化为maxmin的对偶问题,一者因为是的近似解,二者,转化为对偶问题后,更容易求解。下面可以先求L 对w、b的极小,再求L 对的极大。


2、求解对偶问题

回顾一下上面的目标函数L

(7)

这是一个拉格朗日乘法优化方法得到的,由于要求

(8)

先求最大值,后求最小值,求最小值时,将a看成常量,那么L就是w,b的函数了。极值在导数为0的点处取到,因此分
别求L对w,b的导数,并令其为0,得如下结果。

(9)

将(9)式带入(7)(为什么呢?)得到:

(10)

为什么能将(9)式带入(7)式呢?因为极值在导数为零的点处取到,因此(9)式符合(7)式取极值时w,b的取值。(10)式就是(7)式的最小值了,求完最小值,然后求最大值。求对的极大,即是关于对偶问题的最优化问题。经过上面第一个步骤的求w和b,得到的拉格朗日函数式子已经没有了变量w,b,只有。从上面的式子得到:

(11)

(11)式是关于a的式子,如果能求出a,则可以根据(7)式求出w。求出w后可以根据前面函数距离等于1的假设求出b


怎样求a呢?这需要后面的核函数和松弛量的知识,利用SMO算法求解,下篇博客继续介绍核函数。
最后给大家附一张我的推到图,是上面内容的简化版本。



这篇关于机器学习----SVM(2)从原始问题到对偶问题的转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/729305

相关文章

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

使用C#实现将RTF转换为PDF

《使用C#实现将RTF转换为PDF》RTF(RichTextFormat)是一种通用的文档格式,允许用户在不同的文字处理软件中保存和交换格式化文本,下面我们就来看看如何使用C#实现将RTF转换为PDF... 目录Spire.Doc for .NET 简介安装 Spire.Doc代码示例处理异常总结RTF(R

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤