【bzoj2521】【SHOI2010】【最小生成树】【最小割】

2024-02-20 15:08

本文主要是介绍【bzoj2521】【SHOI2010】【最小生成树】【最小割】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

Secsa最近对最小生成树问题特别感兴趣。他已经知道如果要去求出一个n个点、m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法。另外,他还知道,某一个图可能有多种不同的最小生成树。例如,下面图 3中所示的都是图 2中的无向图的最小生成树:

当然啦,这些都不是今天需要你解决的问题。Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中。为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选择一条图中的边 P1P2,再把图中除了这条边以外的边,每一条的权值都减少1。如图 4所示就是一次这样的操作:

Input

输入文件的第一行有3个正整数n、m、Lab分别表示无向图中的点数、边数、必须要在最小生成树中出现的AB边的标号。
接下来m行依次描述标号为1,2,3…m的无向边,每行描述一条边。每个描述包含3个整数x、y、d,表示这条边连接着标号为x、y的点,且这条边的权值为d。
输入文件保证1<=x,y<=N,x不等于y,且输入数据保证这个无向图一定是一个连通图。

Output

输出文件只有一行,这行只有一个整数,即,使得标号为Lab边一定出现最小生成树中的最少操作次数。

Sample Input

4 6 1
1 2 2
1 3 2
1 4 3
2 3 2
2 4 4
3 4 5

Sample Output

1

HINT

1个样例就是问题描述中的例子。


1<=n<=500,1<=M<=800,1<=D<10^6

题解:

   考虑一条边一定在最小生成树中意味着去掉这条边之后,权值小于等于它的边不能使这条边的两端点联通

   固定一条边不变把剩下的边都减一可以看成把这条边加一.

   那割掉一条边的代价就是v[x]-v[i]+1;

   然后直接最小割即可.

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 2010
#define M 100010
#define inf 210000000 
using namespace std;
int point[N],next[M<<1],x,y,v,n,m,S,T,V,cnt=1;
int cur[N],dis[N],pre[N],gap[N],pos;
struct use{int st,en,v,id;
}e[M<<1],b[M];
void add(int x,int y,int v){//cout<<x<<' '<<y<<' '<<v<<endl; next[++cnt]=point[x];point[x]=cnt;e[cnt].st=x;e[cnt].en=y;e[cnt].v=v;next[++cnt]=point[y];point[y]=cnt;e[cnt].st=y;e[cnt].en=x;e[cnt].v=v;
}
int read(){int x(0);char ch=getchar();while (ch<'0'||ch>'9') ch=getchar();while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();return x;
} 
bool cmp(use a,use b){return a.v<b.v;
}
int isap(int ss,int tt){int i,ans(0),mn,u=ss;gap[0]=n;for (i=1;i<=n;i++) cur[i]=point[i];while (dis[ss]<n){bool f=false;for (i=cur[u];i;i=next[i])if (dis[e[i].en]+1==dis[u]&&e[i].v){f=true;cur[u]=i;break;}if (f){pre[u=e[i].en]=i;if (u==tt){mn=inf;for (i=tt;i!=ss;i=e[pre[i]].st) mn=min(mn,e[pre[i]].v);ans+=mn;for (i=tt;i!=ss;i=e[pre[i]].st) e[pre[i]].v-=mn,e[pre[i]^1].v+=mn;u=ss;}}else{--gap[dis[u]];if (!gap[dis[u]]) return ans;for (mn=n,i=point[u];i;i=next[i]) if (e[i].v) mn=min(mn,dis[e[i].en]);gap[dis[u]=mn+1]++;cur[u]=point[u];if (u!=ss) u=e[pre[u]].st; } }return ans;
}
int main(){//freopen("a.in","r",stdin);n=read();m=read();pos=read();for (int i=1;i<=m;i++){x=read();y=read();v=read();b[i].st=x;b[i].en=y;b[i].v=v;b[i].id=i;if (i==pos) S=x,T=y,V=v; } sort(b+1,b+m+1,cmp);for (int i=1;i<=m;i++){if (b[i].v>V) break;if (b[i].id==pos) continue;add(b[i].st,b[i].en,V-b[i].v+1);}cout<<isap(S,T);
}



这篇关于【bzoj2521】【SHOI2010】【最小生成树】【最小割】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728621

相关文章

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

C#自动化生成PowerPoint(PPT)演示文稿

《C#自动化生成PowerPoint(PPT)演示文稿》在当今快节奏的商业环境中,演示文稿是信息传递和沟通的关键工具,下面我们就深入探讨如何利用C#和Spire.Presentationfor.NET... 目录环境准备与Spire.Presentation安装核心操作:添加与编辑幻灯片元素添加幻灯片文本操

Python实现Word文档自动化的操作大全(批量生成、模板填充与内容修改)

《Python实现Word文档自动化的操作大全(批量生成、模板填充与内容修改)》在职场中,Word文档是公认的好伙伴,但你有没有被它折磨过?批量生成合同、制作报告以及发放证书/通知等等,这些重复、低效... 目录重复性文档制作,手动填充模板,效率低下还易错1.python-docx入门:Word文档的“瑞士

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单