大连理工大学 2021年最优化方法大作业(2)

2024-02-20 08:30

本文主要是介绍大连理工大学 2021年最优化方法大作业(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上一篇文章,这次分享一下其他的三种算法,上一篇编写的不精确一维线搜索需要用到,链接在这:大连理工大学 2021年最优化方法大作业(1)_JiangTesla的博客-CSDN博客

下一道题在这:大连理工大学2021最优化方法大作业(3)_JiangTesla的博客-CSDN博客

2022题目的小补充大连理工大学2022上半年最优化方法大作业_Jiang_Tesla的博客-CSDN博客

目录

 1.牛顿法

2.共轭梯度法

3.BFGS


 1.牛顿法

牛顿法的迭代方式非常简单粗暴,不需要一维搜索,直接梯度乘上hesse阵的逆就行了,框图逻辑见下图(图画的不太对,循环那个箭头应该指向菱形上端,相信各位可以理解)

 直接上代码了

%下面3个是输入
x = [0;0];
eps = 0.0001;
start_newton(x,eps);%题目方程式
function f = fun(x) 
f = 10*(x(1)-1)^2 + (x(2)+1)^4; 
end%题目方程式的hesse阵
function h = hesse(x) h = zeros(2,2); h(1,1)=2+400*(3*x(1)^2-x(2)); h(1,2)=-400*x(1);h(2,1)=-400*x(1);h(2,2)=200;end 题目方程式的梯度
function g = grad(x) g = zeros(2,1); g(1)=20*(x(1)-1); g(2) = 4*(x(2)+1)^3; end %牛顿法迭代开始
function start_newton(x0,eps) gk = grad(x0);res = norm(gk);k = 0; while res > eps fprintf('The %d-th iteration, the residual is %f\n',k,res); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');hk = (hesse(x0))^(-1);%hesse阵的逆x0=x0-hk*gk;k = k+1;gk = grad(x0);res = norm(gk); end fprintf('The %d-th iteration, the residual is %f\n',k,res); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));end

2.共轭梯度法

书上有现成的框图,我就不画了

可以看出来,共轭梯度法的搜索方向是一个一个生成的,对于n维问题共轭方向只有n个,所以计算n步之后,以xn为起点,重新生成共轭方向继续迭代,下面上代码,这是共轭方向法的核心,fun(x)还有梯度函数,一维搜索函数(大连理工大学 2021年最优化方法大作业(1)_JiangTesla的博客-CSDN博客)都和之前的一样,直接复制粘在同一个文件里就行,我就不总粘重复的代码了。

function  start_conjungate_gradient(x0, eps)
n=2%二维问题,所以n等于2
g0 = gradient(x0);%自己定义的梯度函数
s0 = -(g0.');
k = 0;
count = 0;%计算迭代次数
lambda = wolfe_powell(x0,s0);%这个函数我在上一个文章写了,就是一维搜索
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1 %判断是否已经生成了n个共轭方向v = (norm(g1))^2/(norm(g0)^2);s1 = -g1 + s0*v;k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);s0 = -(g0.');lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));
end

3.BFGS

先上流程图

H(k+1)的公式懒得打了,书上都有P137,

因为H(k+1)的计算公式比较复杂,我先写了个小函数用来计算

function hk = get_hk(h,x,g)%进来的是列向量
miu = 1 + g.'*h*g/(x.'*g);
fenzi = miu*x*x.'-h*g*x.'-x*g.'*h;
hk = h + fenzi/(x.'*g);
end

下面是核心代码

function  start_bfgs(x0, eps)
n=2;%二维所以是2
g0 = gradient(x0);
h0 = eye(2,2);
s0 = -h0*g0.';
k = 0;
count = 0;
lambda = wolfe_powell(x0,s0);
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1detax = x1 - x0;%下面是计算H(k+1)的步骤detag = g1.' - g0.';h1 = get_hk(h0,detax,detag);%上面定义的计算函数s1 = -h1*g1.';k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;h0 = h1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);h0 = eye(2,2);s0 = -h0*g0.';lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x1(1),x1(2),fun(x1));
end

最后给出一个bfgs总体代码,方便大家对其他方法的重组

x0 = [0;0];
eps = 1e-4;
start_bfgs(x0, eps);function  start_bfgs(x0, eps)
n=2;
g0 = gradient(x0);
h0 = eye(2,2);
s0 = -h0*g0.';
k = 0;
count = 0;
lambda = wolfe_powell(x0,s0);
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1detax = x1 - x0;detag = g1.' - g0.';h1 = get_hk(h0,detax,detag);s1 = -h1*g1.';k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;h0 = h1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);h0 = eye(2,2);s0 = -h0*g0.';lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x1(1),x1(2),fun(x1));
endfunction lamda = wolfe_powell(xk,dk)
c1 = 0.1;c2=0.5;
a = 0; b =Inf;
lamda = 1;
while(1)if ~(fun(xk+lamda*dk)-fun(xk) <= c1*lamda*gradient(xk)*dk)b = lamda;lamda = (lamda + a)/2;continue;endif ~(gradient(xk+lamda*dk)*dk >= c2*gradient(xk)*dk)a = lamda;lamda = min([2*lamda,(b+lamda)/2]);continue;endbreak;
end
endfunction f = fun(x)
f = 10*(x(1)-1)^2 + (x(2)+1)^4; 
endfunction g = gradient(x)%这是行向量g = zeros(1,2); g(1)=20*(x(1)-1); g(2) = 4*(x(2)+1)^3; 
end function hk = get_hk(h,x,g)%进来的是列向量
miu = 1 + g.'*h*g/(x.'*g);
fenzi = miu*x*x.'-h*g*x.'-x*g.'*h;
hk = h + fenzi/(x.'*g);
end

这篇关于大连理工大学 2021年最优化方法大作业(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727596

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A