motplotlib图例案例1:通过多个legend完全控制图例显示顺序(指定按行排序 or 按列排序)

本文主要是介绍motplotlib图例案例1:通过多个legend完全控制图例显示顺序(指定按行排序 or 按列排序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个方法的核心,是手动的获得图中的handlers和labels,然后对它们进行切分和提取,最后分为几个legend进行显示。代码如下:

后来对下面的代码进行修改,通过handlers, labels = get_legend_handles_labels(axs=[axis])自动的获得handler。不再需要诸如handlers = [ax.scatter(range(10), [i * x for x in range(10)], label=f'Line {i}') for i in range(7)]之类的手动提取handler。源代码中这个依然进行了保留,是因为这个代码还是一个绘图过程

# -*- coding: utf-8 -*-
'''
@Time    : 2024/1/5 20:55  \n
@Author  : 月司   \n
@Email   : 815603884@qq.com \n
@File    : 图像图例的横向显示以及纵向显示.py   \n
@version : 1.0  \n
@Software: PyCharm  \n
@Desc    : 
'''import matplotlib.pyplot as plt
import matplotlib.axes
from typing import List, Tuple, Any
#这个函数可以获得axis对象的已经绘制的artist中的所有的hander和labels,这个可以只给它一个axis参数。注意这个参数需要是列表类的。
from matplotlib.legend import _get_legend_handles_labels as get_legend_handles_labelsdef custom_legend_layout(axis: matplotlib.axes.Axes,handlers: List[Any]=None,labels: List[str]=None,n_items: int = 3,offset: float = 0.05,vertical: bool = False,loc: str = 'upper right',first_bbox_to_anchor: Tuple[float, float] = (1, 1),**kwargs) -> None:"""A function to arrange legend items in a custom layout.:param axis: Axis object on which to place the legends.:param lines: List of line objects to include in the legends.:param labels: List of labels corresponding to the line objects.:param n_items: Number of items per row (if vertical=False) or column (if vertical=True).:param offset: Vertical offset between rows (or horizontal offset between columns if vertical=True).:param vertical: If True, legends are arranged vertically, otherwise horizontally.:param loc: Location anchor for all legends.:param first_bbox_to_anchor: :param first_bbox_to_anchor:  `~matplotlib.transforms.BboxBase` instance, Bbox anchor of the first legend.Bbox anchor of the first legend.:param kwargs: Additional keyword arguments to pass to the legend function."""if (handlers is None) != (labels is None):  # Check if only one of handlers or labels is providedraise ValueError("Both 'handlers' and 'labels' must be specified if one is provided.")if (handlers is None) and (labels is None): # get default handlers and labels from axhandlers,labels=get_legend_handles_labels(axs=[axis]) # note:  the param axs is list object# 确保n_items不为0,避免除以0的错误n_items = max(1, n_items)# 计算需要多少个图例n_legends = len(handlers) // n_items + (1 if len(handlers) % n_items else 0)# 计算每个图例的bbox_to_anchorfor i in range(n_legends):start_idx = i * n_itemsend_idx = min(start_idx + n_items, len(handlers))legend_lines = handlers[start_idx:end_idx]legend_labels = labels[start_idx:end_idx]if vertical:# 对于垂直布局ncol = 1if i == 0:bbox_anchor = first_bbox_to_anchorelse:# 计算后续图例的bbox_to_anchorbbox_anchor = (first_bbox_to_anchor[0] + i * offset, first_bbox_to_anchor[1])else:# 对于水平布局ncol = len(legend_lines)if i == 0:bbox_anchor = first_bbox_to_anchorelse:# 计算后续图例的bbox_to_anchorbbox_anchor = (first_bbox_to_anchor[0], first_bbox_to_anchor[1] - i * offset)legend = axis.legend(legend_lines, legend_labels, loc=loc, bbox_to_anchor=bbox_anchor, ncol=ncol, frameon=False, **kwargs)axis.add_artist(legend)if __name__ == '__main__':# 示例使用这个函数fig, ax = plt.subplots()handlers = [ax.scatter(range(10), [i * x for x in range(10)], label=f'Line {i}') for i in range(7)]# 调用函数,横向排列图例custom_legend_layout(ax, n_items=3, offset=0.25, vertical=True,loc='upper center', first_bbox_to_anchor=(0.2, 0.8))from matplotlib.legend import _get_legend_handles_labels as get_legend_handles_labelshandles,labels=get_legend_handles_labels([ax])plt.show()

注意:handlers, labels = get_legend_handles_labels(axs=[axis])可以自动的获得handler和label。

下面是使用这个函数的几个示例:

在这里插入图片描述
在Matplotlib中,bbox_to_anchor 参数用于指定图例(legend)的位置。这个参数接受一个元组,通常包含两个元素,分别代表图例在X轴和Y轴上的位置。这些位置的值通常是基于图表的坐标系统,可以是:

  • 轴坐标(axis coordinates)
  • 图表坐标(matplotlib.transforms.BboxBase)
  • 图坐标(figure coordinates)或其他坐标系统。

图表坐标和图坐标都是相对坐标系

在前面的代码示例中,bbox_to_anchor 的值(例如 (0.5, 1))是基于图表坐标系统的。图表坐标系统中,(0, 0) 代表图表的左下角,而 (1, 1) 代表图表的右上角。因此,一个元组 (0.5, 1) 表示图例位于图表的顶部中心。

另外,如果是这个图片的左下角是(0,0),那么其实是figure的坐标系统

至于 offset 参数(在示例中为 0.05),它用于在指定方向上对图例的位置进行微调。在水平布局(vertical=False)的情况下,offset 用于垂直方向的偏移;在垂直布局(vertical=True)的情况下,offset 用于水平方向的偏移。

例如,如果 first_bbox_to_anchor(0.5, 1)(顶部中心)并且 offset0.05,那么第二个图例的 bbox_to_anchor 将会是 (0.5, 1 - 0.05),即稍微向下偏移。每个后续的图例都会继续这样向下偏移。

需要注意的是,offset 的值 0.05 也是图表坐标值。这意味着它的实际偏移量取决于图表的大小。在不同大小的图表中,相同的 offset 值会产生不同的实际偏移效果。这个值可能需要根据具体的图表尺寸和所需的视觉效果进行调整。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于motplotlib图例案例1:通过多个legend完全控制图例显示顺序(指定按行排序 or 按列排序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726515

相关文章

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

C#实现SHP文件读取与地图显示的完整教程

《C#实现SHP文件读取与地图显示的完整教程》在地理信息系统(GIS)开发中,SHP文件是一种常见的矢量数据格式,本文将详细介绍如何使用C#读取SHP文件并实现地图显示功能,包括坐标转换、图形渲染、平... 目录概述功能特点核心代码解析1. 文件读取与初始化2. 坐标转换3. 图形绘制4. 地图交互功能缩放

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4