Pytorch实战3:DCGAN深度卷积对抗生成网络生成动漫头像

2024-02-19 15:38

本文主要是介绍Pytorch实战3:DCGAN深度卷积对抗生成网络生成动漫头像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权申明:本文章为本人原创内容,转载请注明出处,谢谢合作!

实验环境:

1.Pytorch 0.4.0
2.torchvision 0.2.1
3.Python 3.6
4.Win10+Pycharm
本项目是基于DCGAN的,代码是在《深度学习框架PyTorch:入门与实践》第七章的配套代码上做过大量修改过的。项目所用数据集获取:点击获取 提取码:g5qa,感谢知乎用户何之源爬取的数据。 请将下载的压缩包里的图片完整解压至data/face/目录下。整个项目的代码结构如下图:
这里写图片描述
其中data/face里是存放训练图片的,imgs/存放的是最终的训练结果,model.py是DCGAN的结构,train.py是主要的训练文件。

首先是,model.py:
import torch.nn as nn
# 定义生成器网络G
class NetG(nn.Module):def __init__(self, ngf, nz):super(NetG, self).__init__()# layer1输入的是一个100x1x1的随机噪声, 输出尺寸(ngf*8)x4x4self.layer1 = nn.Sequential(nn.ConvTranspose2d(nz, ngf * 8, kernel_size=4, stride=1, padding=0, bias=False),nn.BatchNorm2d(ngf * 8),nn.ReLU(inplace=True))# layer2输出尺寸(ngf*4)x8x8self.layer2 = nn.Sequential(nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 4),nn.ReLU(inplace=True))# layer3输出尺寸(ngf*2)x16x16self.layer3 = nn.Sequential(nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 2),nn.ReLU(inplace=True))# layer4输出尺寸(ngf)x32x32self.layer4 = nn.Sequential(nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf),nn.ReLU(inplace=True))# layer5输出尺寸 3x96x96self.layer5 = nn.Sequential(nn.ConvTranspose2d(ngf, 3, 5, 3, 1, bias=False),nn.Tanh())# 定义NetG的前向传播def forward(self, x):out = self.layer1(x)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = self.layer5(out)return out# 定义鉴别器网络D
class NetD(nn.Module):def __init__(self, ndf):super(NetD, self).__init__()# layer1 输入 3 x 96 x 96, 输出 (ndf) x 32 x 32self.layer1 = nn.Sequential(nn.Conv2d(3, ndf, kernel_size=5, stride=3, padding=1, bias=False),nn.BatchNorm2d(ndf),nn.LeakyReLU(0.2, inplace=True))# layer2 输出 (ndf*2) x 16 x 16self.layer2 = nn.Sequential(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 2),nn.LeakyReLU(0.2, inplace=True))# layer3 输出 (ndf*4) x 8 x 8self.layer3 = nn.Sequential(nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 4),nn.LeakyReLU(0.2, inplace=True))# layer4 输出 (ndf*8) x 4 x 4self.layer4 = nn.Sequential(nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 8),nn.LeakyReLU(0.2, inplace=True))# layer5 输出一个数(概率)self.layer5 = nn.Sequential(nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),nn.Sigmoid())# 定义NetD的前向传播def forward(self,x):out = self.layer1(x)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = self.layer5(out)return out
然后是,train.py:
import argparse
import torch
import torchvision
import torchvision.utils as vutils
import torch.nn as nn
from random import randint
from model import NetD, NetGparser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=64)
parser.add_argument('--imageSize', type=int, default=96)
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--epoch', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--data_path', default='data/', help='folder to train data')
parser.add_argument('--outf', default='imgs/', help='folder to output images and model checkpoints')
opt = parser.parse_args()
# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#图像读入与预处理
transforms = torchvision.transforms.Compose([torchvision.transforms.Scale(opt.imageSize),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])dataset = torchvision.datasets.ImageFolder(opt.data_path, transform=transforms)dataloader = torch.utils.data.DataLoader(dataset=dataset,batch_size=opt.batchSize,shuffle=True,drop_last=True,
)netG = NetG(opt.ngf, opt.nz).to(device)
netD = NetD(opt.ndf).to(device)criterion = nn.BCELoss()
optimizerG = torch.optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerD = torch.optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))label = torch.FloatTensor(opt.batchSize)
real_label = 1
fake_label = 0for epoch in range(1, opt.epoch + 1):for i, (imgs,_) in enumerate(dataloader):# 固定生成器G,训练鉴别器DoptimizerD.zero_grad()## 让D尽可能的把真图片判别为1imgs=imgs.to(device)output = netD(imgs)label.data.fill_(real_label)label=label.to(device)errD_real = criterion(output, label)errD_real.backward()## 让D尽可能把假图片判别为0label.data.fill_(fake_label)noise = torch.randn(opt.batchSize, opt.nz, 1, 1)noise=noise.to(device)fake = netG(noise)  # 生成假图output = netD(fake.detach()) #避免梯度传到G,因为G不用更新errD_fake = criterion(output, label)errD_fake.backward()errD = errD_fake + errD_realoptimizerD.step()# 固定鉴别器D,训练生成器GoptimizerG.zero_grad()# 让D尽可能把G生成的假图判别为1label.data.fill_(real_label)label = label.to(device)output = netD(fake)errG = criterion(output, label)errG.backward()optimizerG.step()print('[%d/%d][%d/%d] Loss_D: %.3f Loss_G %.3f'% (epoch, opt.epoch, i, len(dataloader), errD.item(), errG.item()))vutils.save_image(fake.data,'%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch),normalize=True)torch.save(netG.state_dict(), '%s/netG_%03d.pth' % (opt.outf, epoch))torch.save(netD.state_dict(), '%s/netD_%03d.pth' % (opt.outf, epoch))

实验结果:

跑完第1个epoch的结果:
这里写图片描述
跑完第25个epoch的结果:
这里写图片描述

这篇关于Pytorch实战3:DCGAN深度卷积对抗生成网络生成动漫头像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/725119

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Oracle Scheduler任务故障诊断方法实战指南

《OracleScheduler任务故障诊断方法实战指南》Oracle数据库作为企业级应用中最常用的关系型数据库管理系统之一,偶尔会遇到各种故障和问题,:本文主要介绍OracleSchedul... 目录前言一、故障场景:当定时任务突然“消失”二、基础环境诊断:搭建“全局视角”1. 数据库实例与PDB状态2

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必