Pytorch 0.4.0迁移指南(与之前版本编程上的不同点)

2024-02-19 15:38

本文主要是介绍Pytorch 0.4.0迁移指南(与之前版本编程上的不同点),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权说明:本篇文章为本人原创内容,转载请注明出处,谢谢合作!

2018年4月25号,官方发布Pytorch0.4.0版本,此版本除了支持Windows外,与之前的Pytorch版本也有诸多不同,主要表现在编程方面。因此该指南主要用来介绍Pytorch0.4.0代码方面需要注意的地方:
####1. 弃用Variables并与Tensors合并
之前版本,最终的输入数据必须转化为Variable的形式,而在Pytorch0.4.0版中,torch.Tensor包括了torch.autograd.Variable,已经不需要转化为Variable的形式。
type()的功能也变了,它不会再返回数据的类型,需要用x.type()代替。

>>>x = torch.DoubleTensor([1, 1, 1])
>>>print(type(x))<class ‘torch.Tensor’>#不再返回数据类型
>>>print(x.type())<class ‘torch.DoubleTensor’>#能返回数据类型

####2. 支持零维Tensors

>>>torch.tensor(3.1416).size()
Torch.Size([])  #零维张量

####3. 弃用volatile
之前版本的volatitle=True 相当于requires_grad=False,一般用于测试的时候不需要进行梯度计算,这样做能减少内存使用。新版中使用torch.no_grad()代替。
####4.新增dtypes、devices和numpy风格的Tensor
如:device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”),会依据你的计算机配置自动选择CPU还是GPU运算。
####用一个例子来对比Pytorch 0.4.0代码上需要注意的地方:
0.3.1(老版本):

model = CNN()if use_cuda:model = model.cuda()# 训练total_loss = 0for input, target in train_loader:input, target = Variable(input), Variable(target) #需转化为Variablehidden = Variable(torch.zeros(*h_shape))  # 定义是否使用GPUif use_cuda:input, target, hidden = input.cuda(), target.cuda(), hidden.cuda()...  # 获得loss的值total_loss += loss.data[0]# 测试for input, target in test_loader:input = Variable(input, volatile=True)if use_cuda:......

0.4.0(新版本):

  # 定义device,是否使用GPU,依据计算机配置自动会选择device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#用.to(device)来决定模型使用GPU还是CPUmodel = CNN().to(device)# 训练total_loss = 0for input, target in train_loader:#不需要转化为Variable,直接用Tensors作为输入,用.to(device)来决定使用GPU还是CPUinput, target = input.to(device), target.to(device)hidden = input.new_zeros(*h_shape)  ...  # 获得loss值,也与老版本不同total_loss += loss.item()          # 测试with torch.no_grad():      # 测试时不会进行梯度计算,节约内存for input, target in test_loader:...

这篇关于Pytorch 0.4.0迁移指南(与之前版本编程上的不同点)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/725118

相关文章

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

SpringBoot整合OpenFeign的完整指南

《SpringBoot整合OpenFeign的完整指南》OpenFeign是由Netflix开发的一个声明式Web服务客户端,它使得编写HTTP客户端变得更加简单,本文为大家介绍了SpringBoot... 目录什么是OpenFeign环境准备创建 Spring Boot 项目添加依赖启用 OpenFeig

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4: