VFH特征的使用(一)

2024-02-19 00:28
文章标签 使用 特征 vfh

本文主要是介绍VFH特征的使用(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、SHOT特征描述符可视化

C++

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/registration/correspondence_estimation.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/registration/transformation_estimation_svd.h> 
#include <pcl/features/3dsc.h>
#include <pcl/keypoints/sift_keypoint.h>
#include <pcl/features/vfh.h>
using namespace std;namespace pcl
{template<>struct SIFTKeypointFieldSelector<PointXYZ>{inline floatoperator () (const PointXYZ& p) const{return p.z;}};
}typedef pcl::PointCloud<pcl::PointXYZ> pointcloud;
typedef pcl::PointCloud<pcl::Normal> pointnormal;
typedef pcl::PointCloud<pcl::VFHSignature308> VFHFeature;VFHFeature::Ptr compute_pfh_feature(pointcloud::Ptr input_cloud, pcl::search::KdTree<pcl::PointXYZ>::Ptr tree)
{pointnormal::Ptr normals(new pointnormal);pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> n;n.setInputCloud(input_cloud);n.setNumberOfThreads(6);n.setSearchMethod(tree);n.setKSearch(10);n.compute(*normals);pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;vfh.setInputCloud(input_cloud);vfh.setInputNormals(normals);vfh.setSearchMethod(tree);vfh.compute(*vfh_fe_vfh);return vfh_fe_vfh;}void extract_keypoint(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& keypoint)
{pcl::PointCloud<pcl::PointWithScale> result;const float min_scale = 5.f;const int n_octaves = 3;const int n_scales_per_octave = 15;const float min_contrast = 0.01f;pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());sift.setSearchMethod(tree);sift.setScales(min_scale, n_octaves, n_scales_per_octave);sift.setMinimumContrast(min_contrast);sift.compute(result);copyPointCloud(result, *keypoint);}int main(int argc, char** argv)
{pointcloud::Ptr source_cloud(new pointcloud);pointcloud::Ptr target_cloud(new pointcloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view1.pcd", *source_cloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view2.pcd", *target_cloud);pcl::PointCloud<pcl::PointXYZ>::Ptr s_k(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr t_k(new pcl::PointCloud<pcl::PointXYZ>);extract_keypoint(source_cloud, s_k);extract_keypoint(target_cloud, t_k);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());VFHFeature::Ptr source_pfh = compute_pfh_feature(s_k, tree);VFHFeature::Ptr target_pfh = compute_pfh_feature(t_k, tree);pcl::registration::CorrespondenceEstimation<pcl::VFHSignature308, pcl::VFHSignature308> crude_cor_est;boost::shared_ptr<pcl::Correspondences> cru_correspondences(new pcl::Correspondences);crude_cor_est.setInputSource(source_pfh);crude_cor_est.setInputTarget(target_pfh);crude_cor_est.determineCorrespondences(*cru_correspondences);Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>::Ptr trans(new pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>);trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);boost::shared_ptr<pcl::visualization::PCLVisualizer>viewer(new pcl::visualization::PCLVisualizer("v1"));viewer->setBackgroundColor(0, 0, 0);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>target_color(target_cloud, 255, 0, 0);viewer->addPointCloud<pcl::PointXYZ>(target_cloud, target_color, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>input_color(source_cloud, 0, 255, 0);viewer->addPointCloud<pcl::PointXYZ>(source_cloud, input_color, "input cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "input cloud");viewer->addCorrespondences<pcl::PointXYZ>(s_k, t_k, *cru_correspondences, "correspondence");while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}return 0;
}

关键代码解析:

    pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;vfh.setInputCloud(input_cloud);vfh.setInputNormals(normals);vfh.setSearchMethod(tree);vfh.compute(*vfh_fe_vfh);
  1. pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);:这行代码定义了一个指向 pcl::PointCloud<pcl::VFHSignature308> 类型的智能指针 vfh_fe_vfh,用于存储计算得到的VFH描述符。

  2. pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;:这行代码创建了一个VFH估计器对象 vfh,用于计算VFH描述符。参数说明如下:

    • pcl::PointXYZ:输入点云的点类型,这里使用的是三维坐标点 PointXYZ
    • pcl::Normal:输入点云的法线类型,用于计算VFH描述符时需要输入点云的法线信息。
    • pcl::VFHSignature308:VFH描述符的类型,这里使用的是308维的VFH描述符。
  3. vfh.setInputCloud(input_cloud);:设置输入点云。input_cloud 是指向输入点云的指针或智能指针,其中包含了点的三维坐标信息。

  4. vfh.setInputNormals(normals);:设置输入法线。normals 是指向输入点云法线的指针或智能指针,其中包含了点云的法线信息。

  5. vfh.setSearchMethod(tree);:设置搜索方法。tree 是指向用于邻域搜索的搜索树对象的指针或智能指针。这个搜索树用于查找每个点的邻域以计算其VFH描述符。

  6. vfh.compute(*vfh_fe_vfh);:计算VFH描述符。这行代码会使用输入的点云和法线信息,以及设置的搜索方法,来计算每个点的VFH描述符,并将结果存储在 vfh_fe_vfh 中。

参数设置的影响如下:

  • 输入点云的质量和分辨率会直接影响到计算得到的VFH描述符的准确性。
  • 输入法线的准确性和一致性对VFH描述符的计算也有很大影响。
  • 搜索方法的选择会影响计算VFH描述符时的邻域搜索效率和准确性,不同的搜索方法可能适用于不同场景下的点云数据。

确保输入数据的准确性和适用性,并根据实际情况选择合适的参数设置,可以得到高质量的VFH描述符。

结果:

我把上面的图片转了个向,可以清楚的发现只有一条对应线 

 

由于VFH(视点特征直方图)是一种全局描述符,它为整个点云生成单一的描述子,这与pcl::SampleConsensusInitialAlignment需要源点云和特征点之间一对一对应的要求不匹配。使用VFH时,你只会得到一个全局特征向量,这意味着不适用于那些需要点对点对应关系的方法。 

可以采用的某些策略:

  1. 使用VFH进行预筛选: 如果有多个目标点云,可以使用VFH描述子来快速筛选出与源点云最相似的目标点云,然后再使用局部特征进行精确配准。这种方法在数据库搜索或者配准多个点云时很有用。

  2. 结合局部特征: 对于每个点云,你可以计算VFH描述子,用于全局配准的粗略定位。随后,对于每个点云,你也计算局部特征描述子,如FPFH,用于精细配准。你可以先用VFH找到大致的配准位置,然后用FPFH做为局部搜索的依据,两者相结合可以提高配准的精度。

  3. 多模态数据融合: 如果你有额外的传感器数据,比如RGB颜色信息,可以考虑将这些信息融入到配准过程中。这种情况下,你可以使用颜色信息来增加点云之间的匹配可能性。

  4. 使用VFH进行快速筛选后的模板匹配: 在已知模板的情况下,可以使用VFH描述子来快速缩小搜索范围,找到最有可能的匹配目标。这种快速筛选可以大幅度减少后续计算量。一旦筛选到合适的候选模板,就可以使用ICP或其他精细配准方法来进行最后的对齐。

这篇关于VFH特征的使用(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/722940

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他