本文主要是介绍0902偏导数-多元函数微分法及其应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 一、偏导数的定义及其计算方法
- 1 偏导数的定义
- 2 偏导数的求法
- 3 偏导数的几何意义
- 二、高阶偏导数
- 结语
一、偏导数的定义及其计算方法
1 偏导数的定义
定义 设函数 z = f ( x , y ) 在点 ( x 0 , y 0 ) 的某一邻域内有定义, z=f(x,y)在点(x_0,y_0)的某一邻域内有定义, z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在 y 0 y_0 y0,而x再 x 0 处有增量 Δ x x_0处有增量\Delta x x0处有增量Δx时,相应的函数有增量
f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) f(x_0+\Delta x,y_0)-f(x_0,y_0) f(x0+Δx,y0)−f(x0,y0)
如果
lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim\limits_{\Delta x\to0}{\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}} Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
存在,那么称此极限为函数 z = f ( x , y ) 在点 ( x 0 , y 0 ) z=f(x,y)在点(x_0,y_0) z=f(x,y)在点(x0,y0)处对x的偏导数,记作
∂ z ∂ x ∣ x = x 0 y = y 0 \frac{\partial z}{\partial x}|_{x=x_0\ y=y_0} ∂x∂z∣x=x0 y=y0,或者 ∂ f ∂ x ∣ x = x 0 y = y 0 \frac{\partial f}{\partial x}|_{x=x_0\ y=y_0} ∂x∂f∣x=x0 y=y0或者 z x ∣ x = x 0 y = y 0 z_x|_{x=x_0\ y=y_0} zx∣x=x0 y=y0或者 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0)
类似的,函数 z = f ( x , y ) 在点 ( x 0 , y 0 ) 对 y z=f(x,y)在点(x_0,y_0)对y z=f(x,y)在点(x0,y0)对y的偏导数定义为
lim Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim\limits_{\Delta y\to0}{\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}} Δy→0limΔyf(x0,y0+Δy)−f(x0,y0)
记作
∂ z ∂ y ∣ x = x 0 y = y 0 \frac{\partial z}{\partial y}|_{x=x_0\ y=y_0} ∂y∂z∣x=x0 y=y0,或者 ∂ f ∂ y ∣ x = x 0 y = y 0 \frac{\partial f}{\partial y}|_{x=x_0\ y=y_0} ∂y∂f∣x=x0 y=y0或者 z y ∣ x = x 0 y = y 0 z_y|_{x=x_0\ y=y_0} zy∣x=x0 y=y0或者 f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0)
如果函数 z = f ( x , y ) 在区域 D 内每一点 ( x , y ) z=f(x,y)在区域D内每一点(x,y) z=f(x,y)在区域D内每一点(x,y)对x的偏导数都存在,那么这个偏导数就是x,y的函数,它就成为函数 z = f ( x , y ) 对自变量 x z=f(x,y)对自变量x z=f(x,y)对自变量x的偏导函数,记作
∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z或者 ∂ f ∂ x \frac{\partial f}{\partial x} ∂x∂f或者 Z x Z_x Zx或 f x ( x , y ) f_x(x,y) fx(x,y)
类似的,可以定义函数 z = f ( x , y ) 对自变量 y z=f(x,y)对自变量y z=f(x,y)对自变量y的偏导函数,记作
∂ z ∂ y \frac{\partial z}{\partial y} ∂y∂z或者 ∂ f ∂ y \frac{\partial f}{\partial y} ∂y∂f或者 Z y Z_y Zy或 f y ( x , y ) f_y(x,y) fy(x,y)
2 偏导数的求法
对于函数 z = f ( x , y ) 求偏导 ∂ z ∂ x , ∂ z ∂ y z=f(x,y)求偏导\frac{\partial z}{\partial x},\frac{\partial z}{\partial y} z=f(x,y)求偏导∂x∂z,∂y∂z
- ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z: 把y看做常量,对x求导;
- ∂ z ∂ y \frac{\partial z}{\partial y} ∂y∂z:把x看做常量,对y求导;
注:
- 推广 u = f ( x , y , z ) u = f(x,y,z) u=f(x,y,z)
- 定义: u x ( x 0 , y 0 , z 0 ) = lim Δ x → 0 u ( x 0 + Δ x , y 0 , z 0 − u ( x 0 , y 0 , z 0 ) ) Δ x u_x(x_0,y_0,z_0)=\lim\limits_{\Delta x\to 0}{\frac{u(x_0+\Delta x,y_0,z_0-u(x_0,y_0,z_0))}{\Delta x}} ux(x0,y0,z0)=Δx→0limΔxu(x0+Δx,y0,z0−u(x0,y0,z0))
- 先求 ∂ u ∂ x \frac{\partial u}{\partial x} ∂x∂u,在带入点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0); ∂ u ∂ x \frac{\partial u}{\partial x} ∂x∂u:把y,z看做常量,对x求导
- z = f ( x , y ) 偏导数有 2 个 ∂ z ∂ x , ∂ z ∂ y z=f(x,y)偏导数有2个\frac{\partial z}{\partial x},\frac{\partial z}{\partial y} z=f(x,y)偏导数有2个∂x∂z,∂y∂z;z=f(x,y,z)偏导数有3个 ∂ u ∂ x \frac{\partial u}{\partial x} ∂x∂u, ∂ u ∂ y \frac{\partial u}{\partial y} ∂y∂u, ∂ u ∂ z \frac{\partial u}{\partial z} ∂z∂u
- ∂ u ∂ x \frac{\partial u}{\partial x} ∂x∂u是一个整体,是一个符号,不能拆分; d y d x \frac{dy}{dx} dxdy是微分的商。
例1 求 z = x 2 + 3 x y + y 2 在 ( 1 , 2 ) 的偏导数 z=x^2+3xy+y^2在(1,2)的偏导数 z=x2+3xy+y2在(1,2)的偏导数
解: ∂ z ∂ x = 2 x + 3 y f x ( 1 , 2 ) = 2 + 6 = 8 ∂ z ∂ y = 3 x + 2 y f y ( 1 , 2 ) = 3 + 4 = 7 解:\\ \frac{\partial z}{\partial x}=2x+3y\\ f_x(1,2)=2+6=8 \\ \frac{\partial z}{\partial y}=3x+2y\\ f_y(1,2)=3+4=7 解:∂x∂z=2x+3yfx(1,2)=2+6=8∂y∂z=3x+2yfy(1,2)=3+4=7
例2 求 z = x 2 sin ( 2 y ) z=x^2\sin(2y) z=x2sin(2y)的偏导数
解: ∂ z ∂ x = 2 x sin ( 2 y ) ∂ z ∂ y = 2 x 2 cos ( 2 y ) 解:\\ \frac{\partial z}{\partial x}=2x\sin(2y)\\ \frac{\partial z}{\partial y}=2x^2\cos(2y) 解:∂x∂z=2xsin(2y)∂y∂z=2x2cos(2y)
例3 设 z = x y ( x > 0 , x ≠ 1 ) z=x^y(x\gt0,x\not=1) z=xy(x>0,x=1),求证 x y ⋅ ∂ z ∂ x + 1 ln x ⋅ ∂ z ∂ y = 2 z \frac{x}{y}\cdot\frac{\partial z}{\partial x}+\frac{1}{\ln x}\cdot\frac{\partial z}{\partial y}=2z yx⋅∂x∂z+lnx1⋅∂y∂z=2z
证明: ∂ z ∂ x = y ⋅ x y − 1 ∂ z ∂ y = ln x ⋅ x 6 ∴ x y ⋅ ∂ z ∂ x + 1 ln x ⋅ ∂ z ∂ y = x y ⋅ y ⋅ x y − 1 + 1 ln x ⋅ ln x ⋅ x y = 2 z 证明:\\ \frac{\partial z}{\partial x}=y\cdot x^{y-1} \\ \frac{\partial z}{\partial y}=\ln x\cdot x^6 \\ \therefore \frac{x}{y}\cdot\frac{\partial z}{\partial x}+\frac{1}{\ln x}\cdot\frac{\partial z}{\partial y}= \frac{x}{y}\cdot y\cdot x^{y-1}+\frac{1}{\ln x}\cdot \ln x\cdot x^y= 2z 证明:∂x∂z=y⋅xy−1∂y∂z=lnx⋅x6∴yx⋅∂x∂z+lnx1⋅∂y∂z=yx⋅y⋅xy−1+lnx1⋅lnx⋅xy=2z
例4 求 r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r=x2+y2+z2的偏导数
解: ∂ r ∂ x = 1 2 ⋅ 1 x 2 + y 2 + z 2 ⋅ 2 x = x x 2 + y 2 + z 2 = x r ∂ r ∂ y = y r ∂ r ∂ z = z r 解:\\ \frac{\partial r}{\partial x}=\frac{1}{2}\cdot\frac{1}{\sqrt{x^2+y^2+z^2}}\cdot 2x=\frac{x}{\sqrt{x^2+y^2+z^2}}=\frac{x}{r} \\ \frac{\partial r}{\partial y}=\frac{y}{r}\\ \frac{\partial r}{\partial z}=\frac{z}{r} 解:∂x∂r=21⋅x2+y2+z21⋅2x=x2+y2+z2x=rx∂y∂r=ry∂z∂r=rz
3 偏导数的几何意义
设 M 0 ( x 0 , y 0 , f ( x 0 , y 0 ) ) 为 z = f ( x , y ) M_0(x_0,y_0,f(x_0,y_0))为z=f(x,y) M0(x0,y0,f(x0,y0))为z=f(x,y)上的一点,过 M 0 做平面 y = y 0 M_0做平面y=y_0 M0做平面y=y0则有曲线
{ z = f ( x , y ) y = y 0 \begin{cases} z=f(x,y)\\ y=y_0 \end{cases} {z=f(x,y)y=y0
在平面 y = y 0 上曲线 z = f ( x , y 0 ) y=y_0上曲线z=f(x,y_0) y=y0上曲线z=f(x,y0)对其导数 d d x f ( x , y 0 ) 即 ( f x ( x 0 , y 0 ) ) 切切线 M 0 T x 对 x \frac{d}{dx}f(x,y_0)即(f_x(x_0,y_0))切切线M_0T_x对x dxdf(x,y0)即(fx(x0,y0))切切线M0Tx对x轴的斜率。
同理 f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0)代表曲线
{ z = f ( x , y ) x = x 0 \begin{cases} z=f(x,y)\\ x=x_0 \end{cases} {z=f(x,y)x=x0
上过 M 0 M_0 M0处切线 M 0 T y 对 y M_0T_y对y M0Ty对y轴的斜率。
注:
- 一元函数连续不一定可导,可导一定连续;多元连续函数不一定可导,多元可导函数不一定连续。
示例:
z = f ( x , y ) = { x y x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 z=f(x,y)=\\ \begin{cases} \frac{xy}{x^2+y^2}, x^2+y^2\not=0\\ 0,x^2+y^2=0 \end{cases} z=f(x,y)={x2+y2xy,x2+y2=00,x2+y2=0
z = f ( x , y ) 在 ( 0 , 0 ) 不连续 z=f(x,y)在(0,0)不连续 z=f(x,y)在(0,0)不连续,通过定义看下在点 ( 0 , 0 ) (0,0) (0,0)的偏导数
f x ( 0 , 0 ) = lim Δ x → 0 f ( 0 + Δ x , 0 ) − f ( 0 , 0 ) Δ x = 0 f y ( 0 , 0 ) = 0 f_x(0,0)=\lim\limits_{\Delta x\to0}{\frac{f(0+\Delta x,0)-f(0,0)}{\Delta x}}=0\\ f_y(0,0)=0 fx(0,0)=Δx→0limΔxf(0+Δx,0)−f(0,0)=0fy(0,0)=0
二、高阶偏导数
定义 z = f ( x , y ) z=f(x,y) z=f(x,y),其偏导数为 ∂ z ∂ x = f x ( x , y ) , ∂ z ∂ y = f y ( x , y ) \frac{\partial z}{\partial x}=f_x(x,y),\frac{\partial z}{\partial y}=f_y(x,y) ∂x∂z=fx(x,y),∂y∂z=fy(x,y).若 f x ( x , y ) , f y ( x , y ) f_x(x,y),f_y(x,y) fx(x,y),fy(x,y)的偏导数也存在,则其偏导数就成为 z = f ( x , y ) z=f(x,y) z=f(x,y)的二阶偏导数。按照对变量求导次序的不同有下列四个二阶偏导数:
∂ ∂ x ( ∂ z ∂ x ) = ∂ 2 z ∂ x 2 = f x x ( x , y ) , ∂ ∂ y ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y = f x y ( x , y ) \frac{\partial}{\partial x}(\frac{\partial z}{\partial x})=\frac{\partial^2 z}{\partial x^2}=f_{xx}(x,y),\frac{\partial}{\partial y}(\frac{\partial z}{\partial x})=\frac{\partial^2 z}{\partial x\partial y}=f_{xy}(x,y) ∂x∂(∂x∂z)=∂x2∂2z=fxx(x,y),∂y∂(∂x∂z)=∂x∂y∂2z=fxy(x,y)
∂ ∂ x ( ∂ z ∂ y ) = ∂ 2 z ∂ y ∂ x = f y x ( x , y ) , ∂ ∂ y ( ∂ z ∂ y ) = ∂ 2 z ∂ y 2 = f y y ( x , y ) \frac{\partial}{\partial x}(\frac{\partial z}{\partial y})=\frac{\partial^2 z}{\partial y\partial x}=f_{yx}(x,y),\frac{\partial}{\partial y}(\frac{\partial z}{\partial y})=\frac{\partial^2 z}{\partial y^2}=f_{yy}(x,y) ∂x∂(∂y∂z)=∂y∂x∂2z=fyx(x,y),∂y∂(∂y∂z)=∂y2∂2z=fyy(x,y)
其中第二、第三两个偏导数称为混合偏导数。同样可得三阶、四阶……以及n节偏导数。二阶及二阶以上偏导数统称为高阶偏导数。
例5: 设 z = x 3 y 2 − 3 x y 3 − x y + 1 , 求 ∂ 2 z ∂ x 2 、 ∂ 2 z ∂ y ∂ x 、 ∂ 2 z ∂ x ∂ y 、 ∂ 2 z ∂ y 2 、 ∂ 3 z ∂ x 3 z=x^3y^2-3xy^3-xy+1,求 \frac{\partial^2 z}{\partial x^2}、\frac{\partial^2 z}{\partial y\partial x}、\frac{\partial^2 z}{\partial x\partial y}、\frac{\partial^2 z}{\partial y^2}、\frac{\partial^3 z}{\partial x^3} z=x3y2−3xy3−xy+1,求∂x2∂2z、∂y∂x∂2z、∂x∂y∂2z、∂y2∂2z、∂x3∂3z
解: ∂ z ∂ x = 3 x 2 y 2 − 3 y 3 − y , ∂ z ∂ y = 2 x 3 y − 9 x y 2 − x ∂ 2 z ∂ x 2 = 6 x y 2 ∂ 2 z ∂ y ∂ x = 6 x 2 y − 9 y 2 − 1 ∂ 2 z ∂ x ∂ y = 6 x 2 y − 9 y 2 − 1 ∂ 2 z ∂ y 2 = 2 x 3 − 18 x y ∂ 3 z ∂ x 3 = 6 y 2 解:\\ \frac{\partial z}{\partial x}=3x^2y^2-3y^3-y,\frac{\partial z}{\partial y}=2x^3y-9xy^2-x\\ \frac{\partial^2 z}{\partial x^2}=6xy^2 \\ \frac{\partial^2 z}{\partial y\partial x}=6x^2y-9y^2-1\\ \frac{\partial^2 z}{\partial x\partial y}=6x^2y-9y^2-1\\ \frac{\partial^2 z}{\partial y^2}=2x^3-18xy\\ \frac{\partial^3 z}{\partial x^3}=6y^2 解:∂x∂z=3x2y2−3y3−y,∂y∂z=2x3y−9xy2−x∂x2∂2z=6xy2∂y∂x∂2z=6x2y−9y2−1∂x∂y∂2z=6x2y−9y2−1∂y2∂2z=2x3−18xy∂x3∂3z=6y2
定理 如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的两个混合偏导数 ∂ 2 z ∂ y ∂ x 及 ∂ 2 z ∂ x ∂ y \frac{\partial^2 z}{\partial y\partial x}及\frac{\partial^2 z}{\partial x\partial y} ∂y∂x∂2z及∂x∂y∂2z在区域D内连续,那么在该区域的两个混合偏导数必相等。
例6 验证函数 z = ln x 2 + y 2 z=\ln\sqrt{x^2+y^2} z=lnx2+y2满足方程 ∂ 2 z ∂ x 2 + ∂ 2 z ∂ 6 2 = 0 \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial 6^2}=0 ∂x2∂2z+∂62∂2z=0
证: z = ln x 2 + y 2 = 1 2 ln ( x 2 + y 2 ) ∂ z ∂ x = 1 2 ⋅ 1 x 2 + y 2 ⋅ 2 x = x x 2 + y 2 ∂ z ∂ y = y x 2 + y 2 ∂ 2 z ∂ x 2 = ( x 2 + y 2 ) − 2 x 2 ( x 2 + y 2 ) 2 = y 2 − x 2 ( x 2 + y 2 ) 2 ∂ 2 z ∂ y 2 = x 2 − y 2 ( x 2 + y 2 ) 2 ∴ ∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = y 2 − x 2 ( x 2 + y 2 ) 2 + x 2 − y 2 ( x 2 + y 2 ) 2 = 0 证:\\ z=\ln\sqrt{x^2+y^2}=\frac{1}{2}\ln(x^2+y^2)\\ \frac{\partial z}{\partial x}=\frac{1}{2}\cdot\frac{1}{x^2+y^2}\cdot2x=\frac{x}{x^2+y^2}\\ \frac{\partial z}{\partial y}=\frac{y}{x^2+y^2}\\ \frac{\partial^2 z}{\partial x^2}=\frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}=\frac{y^2-x^2}{(x^2+y^2)^2}\\ \frac{\partial^2 z}{\partial y^2}=\frac{x^2-y^2}{(x^2+y^2)^2}\\ \therefore \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=\frac{y^2-x^2}{(x^2+y^2)^2}+\frac{x^2-y^2}{(x^2+y^2)^2}=0 证:z=lnx2+y2=21ln(x2+y2)∂x∂z=21⋅x2+y21⋅2x=x2+y2x∂y∂z=x2+y2y∂x2∂2z=(x2+y2)2(x2+y2)−2x2=(x2+y2)2y2−x2∂y2∂2z=(x2+y2)2x2−y2∴∂x2∂2z+∂y2∂2z=(x2+y2)2y2−x2+(x2+y2)2x2−y2=0
例7 证明函数 u = 1 r u=\frac{1}{r} u=r1满足方程 ∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 + ∂ 2 z ∂ z 2 = 0 \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}+\frac{\partial^2 z}{\partial z^2}=0 ∂x2∂2z+∂y2∂2z+∂z2∂2z=0,其中 r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r=x2+y2+z2
证明 : ∂ u ∂ x = ∂ u ∂ r ⋅ ∂ r ∂ x = − 1 r 2 ⋅ x r = − x r 3 ∂ 2 u ∂ x 2 = − 1 r 3 + 3 x r 4 ⋅ x r = − 1 r 3 + 3 x 2 r 5 ∵ 函数关于自变量对称 ∴ ∂ u 2 ∂ y 2 = − 1 r 3 + 3 y 2 r 5 , ∂ u 2 ∂ z 2 = − 1 r 3 + 3 z 2 r 5 ∂ u 2 ∂ x 2 + ∂ u 2 ∂ y 2 + ∂ u 2 ∂ z 2 = − 3 r 3 + 3 ( x 2 + y 2 + z 2 ) r 5 = 0 证明:\\ \frac{\partial u}{\partial x}=\frac{\partial u}{\partial r}\cdot\frac{\partial r}{\partial x}=-\frac{1}{r^2}\cdot\frac{x}{r}=-\frac{x}{r^3}\\ \frac{\partial^2 u}{\partial x^2}=-\frac{1}{r^3}+\frac{3x}{r^4}\cdot\frac{x}{r}=-\frac{1}{r^3}+\frac{3x^2}{r^5} \\ \because 函数关于自变量对称 \\ \therefore \frac{\partial u^2}{\partial y^2}=-\frac{1}{r^3}+\frac{3y^2}{r^5},\frac{\partial u^2}{\partial z^2}=-\frac{1}{r^3}+\frac{3z^2}{r^5} \\ \frac{\partial u^2}{\partial x^2}+\frac{\partial u^2}{\partial y^2}+\frac{\partial u^2}{\partial z^2}=-\frac{3}{r^3}+\frac{3(x^2+y^2+z^2)}{r^5}=0 证明:∂x∂u=∂r∂u⋅∂x∂r=−r21⋅rx=−r3x∂x2∂2u=−r31+r43x⋅rx=−r31+r53x2∵函数关于自变量对称∴∂y2∂u2=−r31+r53y2,∂z2∂u2=−r31+r53z2∂x2∂u2+∂y2∂u2+∂z2∂u2=−r33+r53(x2+y2+z2)=0
结语
❓QQ:806797785
⭐️文档笔记地址:https://gitee.com/gaogzhen/math
参考:
[1]同济大学数学系.高等数学 第七版 下册[M].北京:高等教育出版社,2014.7.p65-71.
[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p65.
[3]关于梯度下降算法的理解[CP/OL].
这篇关于0902偏导数-多元函数微分法及其应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!