python 转百分比_财码Python量化选股(四)投资组合

2024-02-18 15:40

本文主要是介绍python 转百分比_财码Python量化选股(四)投资组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3a27e88336a6adf862625a7de7dd36ca.png

上篇文章 《财码Python量化选股(三)选股分析 》 回答了问题:“什么样的股票是有价值的,如何从股票池中选出这些股票。”本篇,我们继续回答第二个问题:“选出合适的股票后如何构建投资组合并动态调整?” 投资组合理论

哈里·马科维茨(Harry Markowitz)于1952年提出的“投资组合理论(Portfolio Selection)”包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。

其中均值-方差优化法,将不同预期收益和波动率的资产组合在一起,决定一种数学上最优的分配方案,从而将目标收益的风险降至最低,此类最优投资组合的集合被称为有效边界。

本实验使用PyPortfolioOpt实现投资组合优化。PyPortfolioOpt是基于Markowitz和Black-Litterman等理论开发的金融投资组合优化技术的库,该项目提供了五个主要功能:

  • 预期收益估算(平均历史收益)

  • 风险模型(即资产收益的协方差)

  • 有效边界优化

  • 布莱克-利特曼分配

  • 其他投资组合优化器

b025d3858fa1b87be31c6976e70f47cb.png

关于PyPortfolioOpt,更详细的资料见:https://pyportfolioopt.readthedocs.io/en/latest/

Python案例模拟

1. 安装PyPortfolioOpt。

import pandas as pdimport numpy as npfrom pypfopt import EfficientFrontierfrom pypfopt import risk_modelsfrom pypfopt import expected_returnsimport baostock as bs

2. 获取上个实验中我们选出的股票

stock=pd.read_excel(r'选股初探.xlsx') stock['code']

23fd8fc6c822e31b3931cc16c5819364.png

3. 获取股票相关数据

因为我们选股用的是2019年12月31日的数据,因此这里往前再分析3年

lg = bs.login()data_list = []for s in stock['code']:    rs = bs.query_history_k_data_plus(s, 'date,code,close', start_date='2016-01-01', end_date='2019-12-31', adjustflag='2')    while (rs.error_code == '0') & rs.next():        data_list.append(rs.get_row_data())df = pd.DataFrame(data_list, columns=rs.fields)df = df.apply(pd.to_numeric, errors='ignore')df['date']=pd.to_datetime(df['date'])bs.logout()df

f1ebc4ded1dd667dd47eb7cb1897f342.png

4. 处理数据

索引应包含日期或时间戳,每列应代表资产价格的历史值。

lg = bs.login()data_list = []for s in stock['code']:    rs = bs.query_history_k_data_plus(s, 'date,code,close', start_date='2016-01-01', end_date='2019-12-31', adjustflag='2')    while (rs.error_code == '0') & rs.next():        data_list.append(rs.get_row_data())df = pd.DataFrame(data_list, columns=rs.fields)df = df.apply(pd.to_numeric, errors='ignore')df['date']=pd.to_datetime(df['date'])bs.logout()df
82183fdc75d1efc4fcc17ac5213d65a5.png

5.简单看一下股票历史价格图形

由于茅台实在过于一只独秀了,很难看出其他股票的涨幅和波动

df.plot(figsize=(15,10))
b459af4829c4715d6bb8406731f38290.png

6. 把茅台剔除再看一下

df.drop('sh.600519', 1).plot(figsize=(15,10))
72a032b4379fb1f43ce0fe2b9a2994ec.png

从这张图可以看出000661长春高新涨势和稳定性都很不错

那么假如我们有一定的资金,具体该怎么在这几只股票之间分配呢?

7. 计算最优股票组合

我们使用PyPortfolioOpt提供的模型,计算最优股票组合

# 1.计算期望报酬率和协方差mu = expected_returns.mean_historical_return(df)S = risk_models.sample_cov(df)# 2.夏普比率最大化的投资组合ef = EfficientFrontier(mu, S)weights = ef.max_sharpe()cleaded_weights = ef.clean_weights()ef.portfolio_performance(verbose=True)
b63adaf53578d966ec79d3b566b77295.png 6571ce16b430c8388f4e4f6c3ec2098f.png

模型返回的期望报酬率是58.6%,波动率27.2%,夏普比率2.08

建议的投资比例是600519茅台54.933%,603160汇顶科技28.82%,000661长春高新15.73%,000858五粮液0.51%。

验证投资组合模型

案例到上一步,已经给出了模型建议的投资组合。感兴趣的小伙伴可以继续验证一下PyPortfolioOpt的模型原理

1. 模型用股价变化代表每日收益率

returns = df.pct_change() # pct_change():当前元素与先前元素的相差百分比returns
daa5a8a7a0cd519de5ee1086d1456d21.png

2. 计算期望收益

期望每日收益:Σ平均每日历史收益*股票权重

股票权重直接使用PyPortfolioOpt模型给出的最优股票组合权重进行验证

年化期望收益=期望每日收益*252(一年股市共252个交易日)

weights_value=np.array(list(weights.values())) #weights.values()的数据类型是OrderedDict:有序字典,操作可参考dictAnnualReturn = (returns.mean() * weights_value).sum()*252AnnualReturn

0.5858831191150594

与上文比较第一个指标:(0.5858831191150594, 0.27212823050446977, 2.0794723063683196)

3. 模型用方差代表波动性

returns.cov()# cov():计算DataFrame系列之间的成对协方差。返回的数据是DataFrame的协方差矩阵。
7358d522ac4b629b982d0cc4e875fd8c.png

4. 根据公式计算年化协方差和年化波动率

1bd97df6d2fa653abedc5071406eb022.png

# 年化协方差AnnualVariance = np.dot(weights_value.T, np.dot(returns.cov()*252,weights_value))# 计算年化波动率:√协方差AnnualVolatility = np.sqrt(AnnualVariance)AnnualVolatility

0.27212823050446977

与上文比较第二个指标:(0.5858831191150594, 0.27212823050446977, 2.0794723063683196)

5. 验证夏普比率

夏普比率是投资组合的收益减去每单位风险(波动率)的无风险利率。

7f3cc2dadea961bc31ca2d140721d0ca.png

下图:纵坐标是期望收益(AnnualisedReturns),横坐标是风险(AnnualiesdVolatility)

20e9e086e7d39492335fe1dc793d8ad5.png

在模型中,我们设定了最优组合为max_sharpe(),也就是收益率最高的点。

SharpRatio=(AnnualReturn - 0.02)/AnnualVolatility #无风险报酬率模型默认2%SharpRatio

2.0794723063683196

与上文比较第三个指标:(0.5858831191150594, 0.27212823050446977, 2.0794723063683196)

想了解更多课程,欢迎访问财码Python官网:www.fincode.com.cn  

想进财码Python学习群的小伙伴可以添加财码小秘书~

6a8067548906c2f90477c3447a797b6c.png

往期课程推荐:

《财码Python量化选股(一)财经数据获取》

《财码Python量化选股(二)财经数据可视化》

42bdae4d43f783c20316bbbe91761d8d.png

这篇关于python 转百分比_财码Python量化选股(四)投资组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/721631

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核