【深度优先搜索】【图论】【树】2646. 最小化旅行的价格总和

2024-02-18 12:12

本文主要是介绍【深度优先搜索】【图论】【树】2646. 最小化旅行的价格总和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字

涉及知识点

深度优先搜索 图论 树

LeetCode2646. 最小化旅行的价格总和

现有一棵无向、无根的树,树中有 n 个节点,按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条边。
每个节点都关联一个价格。给你一个整数数组 price ,其中 price[i] 是第 i 个节点的价格。
给定路径的 价格总和 是该路径上所有节点的价格之和。
另给你一个二维整数数组 trips ,其中 trips[i] = [starti, endi] 表示您从节点 starti 开始第 i 次旅行,并通过任何你喜欢的路径前往节点 endi 。
在执行第一次旅行之前,你可以选择一些 非相邻节点 并将价格减半。
返回执行所有旅行的最小价格总和。
示例 1:
输入:n = 4, edges = [[0,1],[1,2],[1,3]], price = [2,2,10,6], trips = [[0,3],[2,1],[2,3]]
输出:23
解释:
上图表示将节点 2 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 、2 和 3 并使其价格减半后的树。
第 1 次旅行,选择路径 [0,1,3] 。路径的价格总和为 1 + 2 + 3 = 6 。
第 2 次旅行,选择路径 [2,1] 。路径的价格总和为 2 + 5 = 7 。
第 3 次旅行,选择路径 [2,1,3] 。路径的价格总和为 5 + 2 + 3 = 10 。
所有旅行的价格总和为 6 + 7 + 10 = 23 。可以证明,23 是可以实现的最小答案。
示例 2:
输入:n = 2, edges = [[0,1]], price = [2,2], trips = [[0,0]]
输出:1
解释:
上图表示将节点 0 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 并使其价格减半后的树。
第 1 次旅行,选择路径 [0] 。路径的价格总和为 1 。
所有旅行的价格总和为 1 。可以证明,1 是可以实现的最小答案。
提示:
1 <= n <= 50
edges.length == n - 1
0 <= ai, bi <= n - 1
edges 表示一棵有效的树
price.length == n
price[i] 是一个偶数
1 <= price[i] <= 1000
1 <= trips.length <= 100
0 <= starti, endi <= n - 1

两次深度优先搜索

深度优先搜索计算进过各节点多少次

以任何一个节点(比如:0)为整课树的节点,有如下性质:
性质一:路径一定是:起点 → \rightarrow 公共祖先 → \rightarrow 终点 特例是:起点或终点就是公共祖先。
性质二:如果某棵子树包括某次旅行的起点或终点,则此次旅行必定经过此子树根节点。如果起点和终点都是此子树的节点,也算。 之后就不算了。
如何判断 节点是否属于子树:
DFS 的开始,给节点编号(访问编号)m_vTime[cur],从1到大。没有访问就是默认值0。
DFS结束时,访问编号大于等于m_vTime[cur],是本子树的节点。
m_vNeedVis 记录各节点访问的需要访问的次数。
m_vHasDo 记录那些旅行的公共祖先已经访问。

深度优先搜索枚举半价

{ 子节点节点全价 根节点半价 m i n ( 子节点节点全价,子节点节点半价 ) 根节点全价 \begin{cases} 子节点节点全价 & 根节点半价 \\ min(子节点节点全价,子节点节点半价) & 根节点全价 \\ \end{cases} {子节点节点全价min(子节点节点全价,子节点节点半价)根节点半价根节点全价
DFS2返回值两个:
一,全价、半价的较小值。
二,全价的最小值。

代码

核心代码

class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class Solution {
public:int minimumTotalPrice(int n, vector<vector<int>>& edges, vector<int>& price, vector<vector<int>>& trips) {CNeiBo2 neiBo(n, edges, false);m_vNeedVis.resize(n);m_vHasDo.resize(trips.size());m_vTime.resize(n);m_trips = trips;m_price = price;DFS(neiBo.m_vNeiB, 0, -1);return DFS2(neiBo.m_vNeiB, 0, -1).first;}void DFS(vector<vector<int>>& neiBo, int cur, int par){m_vTime[cur] = ++m_llTime;for (const auto& next : neiBo[cur]){if (next == par){continue;}DFS(neiBo, next, cur);}for (int i = m_trips.size()-1 ; i >=0 ; i--){if (m_vHasDo[i]){continue;}const auto& v = m_trips[i];if ((m_vTime[v[0]] >= m_vTime[cur]) || (m_vTime[v[1]] >= m_vTime[cur])){m_vNeedVis[cur]++;if ((m_vTime[v[0]] >= m_vTime[cur]) && (m_vTime[v[1]] >= m_vTime[cur])){ m_vHasDo[i] = true;}}}}pair<int,int> DFS2(vector<vector<int>>& neiBo, int cur, int par){int  i2 = m_price[cur]*m_vNeedVis[cur],i1 =i2/2;for (const auto& next : neiBo[cur]){if (next == par){continue;}auto [i11,i21] = DFS2(neiBo, next, cur);i1 += i21;i2 += i11;}return make_pair(min(i1, i2), i2);}vector<int> m_vNeedVis,m_vTime;// 记录各节点访问的需要访问的次数。vector<bool>	m_vHasDo;// 记录那些旅行的公共祖先已经访问。int m_llTime = 0;vector<vector<int>> m_trips;vector<int> m_price;
};

测试用例


template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	int n;vector<int>  price;vector<vector<int>> edges, trips;{Solution sln;n = 4, edges = { {0,1},{1,2},{1,3} }, price = { 2,2,10,6 }, trips = { {0,3},{2,1},{2,3} };auto res = sln.minimumTotalPrice(n, edges, price, trips);Assert(res,23);}{Solution sln;n = 2, edges = { {0,1} }, price = { 2,2 }, trips = { {0,0} };auto res = sln.minimumTotalPrice(n, edges, price, trips);Assert(res, 1);}{Solution sln;n = 5, edges = { {1,2},{2,0},{0,3},{3,4} }, price = { 12,26,22,12,2 };trips = { {3,3},{3,2},{3,0},{3,4},{1,1},{2,2},{4,0},{0,2},{2,3},{2,1},{4,2},{0,1},{4,2},{0,4},{0,3},{4,0},{4,0},{3,3},{4,3},{2,2},{4,2},{1,4},{3,2},{4,4},{4,2},{2,3},{4,3},{4,4},{4,2},{0,4},{4,2},{3,4},{4,0},{3,2},{3,1},{2,0},{0,4},{3,4},{2,0},{1,4},{4,2},{4,4},{2,1},{0,1},{4,1},{3,4},{0,4},{2,0},{2,0},{3,3},{4,4},{0,1},{0,1},{0,1},{2,0},{0,1},{3,1},{3,4},{3,4},{4,2},{0,4},{4,4},{3,2},{2,1},{3,2},{1,4},{1,0},{4,2},{4,3},{3,1},{4,4},{3,1},{1,0},{0,0},{0,0},{3,0},{0,2},{2,2},{3,3},{0,3} };;auto res = sln.minimumTotalPrice(n, edges, price, trips);Assert(res, 2037);}}

2023年3月

class CNeiBo2
{
public:
CNeiBo2(int n, vector<vector>& edges, bool bDirect)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0]].emplace_back(v[1]);
if (!bDirect)
{
m_vNeiB[v[1]].emplace_back(v[0]);
}
}
}
vector<vector> m_vNeiB;
};
class Solution {
public:
int minimumTotalPrice(int n, vector<vector>& edges, vector& price, vector<vector>& trips) {
m_vParent.resize(n);
CNeiBo2 neBo(n, edges, false);
dfs(0, -1, neBo.m_vNeiB);
vector vTotalPrice(n);
for (const vector& trip : trips)
{
const auto& v0 = m_vParent[trip[0]];
const auto& v1 = m_vParent[trip[1]];
int i = 0;
for (; (i < min(v0.size(), v1.size())) && (v0[i] == v1[i]); i++);
vTotalPrice[v0[i - 1]] += price[v0[i - 1]];
for (int j = i; j < v0.size(); j++)
{
vTotalPrice[v0[j]] += price[v0[j]];
}
for (int j = i; j < v1.size(); j++)
{
vTotalPrice[v1[j]] += price[v1[j]];
}
}
int iRet = std::accumulate(vTotalPrice.begin(), vTotalPrice.end(), 0);
return iRet - MaxDFS(0, -1, neBo.m_vNeiB, vTotalPrice, true);
}
void dfs(int iCur, int iParent, const vector<vector>& vNeiBo)
{
if (-1 != iParent)
{
m_vParent[iCur] = m_vParent[iParent];
}
m_vParent[iCur].emplace_back(iCur);
for (const auto& next : vNeiBo[iCur])
{
if (iParent == next)
{
continue;
}
dfs(next, iCur, vNeiBo);
}
}
int MaxDFS(int iCur, int iParent, const vector<vector>& vNeiBo, const vector& vTotalPrice,bool bCanRoot)
{
int iRet = 0;
for (const auto& next : vNeiBo[iCur])
{
if (iParent == next)
{
continue;
}
iRet += MaxDFS(next, iCur, vNeiBo, vTotalPrice,true);
}
if ((!bCanRoot) || (0 == vTotalPrice[iCur]))
{
return iRet;
}
int iRet2 = vTotalPrice[iCur] / 2;
for (const auto& next : vNeiBo[iCur])
{
if (iParent == next)
{
continue;
}
iRet2 += MaxDFS(next, iCur, vNeiBo, vTotalPrice, false);
}
return max(iRet, iRet2);
}
vector<vector> m_vParent;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【深度优先搜索】【图论】【树】2646. 最小化旅行的价格总和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/721125

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.