[NNLM]论文实现:A Neural Probabilistic Language Model [Yoshua Bengio, Rejean Ducharme, Pascal Vincent]

本文主要是介绍[NNLM]论文实现:A Neural Probabilistic Language Model [Yoshua Bengio, Rejean Ducharme, Pascal Vincent],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A Neural Probabilistic Language Model

    • 一、完整代码
      • 1.1 Python 完整程序
    • 二、论文解读
      • 2.1 目标
    • 三、过程实现
      • 3.1 Tensorflow模型
      • 3.2 数据准备
      • 3.3 数据训练和预测
    • 四、整体总结

论文:A Neural Probabilistic Language Model
作者:Yoshua Bengio; Rejean Ducharme and Pascal Vincent
时间:2000

一、完整代码

这篇文献似乎是第一篇词嵌入模型在神经网络上的文献,由于文献比较早,结构比较简单,这里简要介绍一下,并使用Tensorflow实现.

1.1 Python 完整程序

# tf.__version__ == 2.10.1
import tensorflow as tf
import numpy as np
import pandas as pd## 建立词表
s = '东胜神洲傲来国海边有一花果山,山顶一石,受日月精华,产下一个石猴,石猴勇探瀑布飞泉,发现水帘洞,被众猴奉为美猴王,猴王领群猴在山中自由自在数百载,偶闻仙、佛、神圣三者可躲过轮回,与天地山川齐寿,遂独自乘筏泛海,历南赡部洲,至西牛贺洲,终在灵台方寸山斜月三星洞,为菩提祖师收留,赐其法名孙悟空,悟空在三星洞悟彻菩提妙理,学到七十二般变化和筋斗云之术后返回花果山,一举灭妖魔混世魔王,花果山狼、虫、虎、豹等七十二洞妖王都来奉其为尊'vocabulary = list(set(list(s)))
n = 5
m = len(vocabulary)data_list = []
for i in range(len(s)-n):data_list.append([s[i:i+n], s[i+n]])## 准备数据
## [['东胜神洲傲', '来'], ['胜神洲傲来', '国'], ['神洲傲来国', '海']]x_train = np.array(data_list)[:,0]
y_train = np.array(data_list)[:,1]def get_one_hot(lst):one_hot_list = []for item in lst:one_hot = [0] * len(vocabulary)ix = vocabulary.index(item)one_hot[ix] = 1one_hot_list.append(one_hot)return one_hot_listx_train = [get_one_hot(item) for item in x_train]
y_train = [vocabulary.index(item) for item in y_train]## 建立模型
class Embedding(tf.keras.layers.Layer):def __init__(self, out_shape, **kwargs):super().__init__(**kwargs)self.out_shape = out_shapedef build(self, input_shape):self.H = self.add_weight(shape=[input_shape[-1], self.out_shape],initializer=tf.initializers.glorot_normal(),)def call(self, inputs):return tf.matmul(inputs, self.H)model = tf.keras.Sequential([tf.keras.layers.Input(shape=(n, m)),Embedding(200),tf.keras.layers.Flatten(),tf.keras.layers.Dense(200, activation='tanh'),tf.keras.layers.Dense(m, activation='softmax'),
])model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics='accuracy')
history = model.fit(x=x_train, y=y_train, epochs=100, verbose=0)
pd.DataFrame(history.history).plot()## 预测模型
s = '边有一花果'
vocabulary[model.predict([get_one_hot(s)])[0].argmax()] 
# '山'

二、论文解读

2.1 目标

这篇论文的目的是:已知一段文本序列,求文本序列下一个词出现的概率,这里我们很容易就想到一个概率公式 P ( x n ∣ x n − 1 , x n − 2 , … , x 1 ) P(x_n|x_{n-1},x_{n-2},\dots,x_1) P(xnxn1,xn2,,x1).虽然用这个公式从现在看来有很多的毛病,但是要考虑到这是一篇2000年的论文.

三、过程实现

3.1 Tensorflow模型

n = 预测句子长度
m = 词表维度
class Embedding(tf.keras.layers.Layer):def __init__(self, out_shape, **kwargs):super().__init__(**kwargs)self.out_shape = out_shapedef build(self, input_shape):self.H = self.add_weight(shape=[input_shape[-1], self.out_shape],initializer=tf.initializers.glorot_normal(),)def call(self, inputs):return tf.matmul(inputs, self.H)model = tf.keras.Sequential([tf.keras.layers.Input(shape=(n, m)),Embedding(200),tf.keras.layers.Flatten(),tf.keras.layers.Dense(200, activation='tanh'),tf.keras.layers.Dense(m, activation='softmax'),
])

3.2 数据准备

从西游记里面选了一段文字,准备数据 input_shape=[n,m]

s = '东胜神洲傲来国海边有一花果山,山顶一石,受日月精华,产下一个石猴,石猴勇探瀑布飞泉,发现水帘洞,被众猴奉为美猴王,猴王领群猴在山中自由自在数百载,偶闻仙、佛、神圣三者可躲过轮回,与天地山川齐寿,遂独自乘筏泛海,历南赡部洲,至西牛贺洲,终在灵台方寸山斜月三星洞,为菩提祖师收留,赐其法名孙悟空,悟空在三星洞悟彻菩提妙理,学到七十二般变化和筋斗云之术后返回花果山,一举灭妖魔混世魔王,花果山狼、虫、虎、豹等七十二洞妖王都来奉其为尊'vocabulary = list(set(list(s)))
n = 5
m = len(vocabulary)data_list = []
for i in range(len(s)-n):data_list.append([s[i:i+n], s[i+n]])x_train = np.array(data_list)[:,0]
y_train = np.array(data_list)[:,1]def get_one_hot(lst):one_hot_list = []for item in lst:one_hot = [0] * len(vocabulary)ix = vocabulary.index(item)one_hot[ix] = 1one_hot_list.append(one_hot)return one_hot_listx_train = [get_one_hot(item) for item in x_train]
y_train = [vocabulary.index(item) for item in y_train]

3.3 数据训练和预测

model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics='accuracy')
history = model.fit(x=x_train, y=y_train, epochs=100, verbose=0)
pd.DataFrame(history.history).plot()s = '边有一花果'
vocabulary[model.predict([get_one_hot(s)])[0].argmax()]
# 输出山

应该为山,预测结果与实际一致.

训练loss和accuracy如下:

数据比较小,很好训练

四、整体总结

论文太早了,实现没难度!

这篇关于[NNLM]论文实现:A Neural Probabilistic Language Model [Yoshua Bengio, Rejean Ducharme, Pascal Vincent]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720092

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句