[NNLM]论文实现:A Neural Probabilistic Language Model [Yoshua Bengio, Rejean Ducharme, Pascal Vincent]

本文主要是介绍[NNLM]论文实现:A Neural Probabilistic Language Model [Yoshua Bengio, Rejean Ducharme, Pascal Vincent],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A Neural Probabilistic Language Model

    • 一、完整代码
      • 1.1 Python 完整程序
    • 二、论文解读
      • 2.1 目标
    • 三、过程实现
      • 3.1 Tensorflow模型
      • 3.2 数据准备
      • 3.3 数据训练和预测
    • 四、整体总结

论文:A Neural Probabilistic Language Model
作者:Yoshua Bengio; Rejean Ducharme and Pascal Vincent
时间:2000

一、完整代码

这篇文献似乎是第一篇词嵌入模型在神经网络上的文献,由于文献比较早,结构比较简单,这里简要介绍一下,并使用Tensorflow实现.

1.1 Python 完整程序

# tf.__version__ == 2.10.1
import tensorflow as tf
import numpy as np
import pandas as pd## 建立词表
s = '东胜神洲傲来国海边有一花果山,山顶一石,受日月精华,产下一个石猴,石猴勇探瀑布飞泉,发现水帘洞,被众猴奉为美猴王,猴王领群猴在山中自由自在数百载,偶闻仙、佛、神圣三者可躲过轮回,与天地山川齐寿,遂独自乘筏泛海,历南赡部洲,至西牛贺洲,终在灵台方寸山斜月三星洞,为菩提祖师收留,赐其法名孙悟空,悟空在三星洞悟彻菩提妙理,学到七十二般变化和筋斗云之术后返回花果山,一举灭妖魔混世魔王,花果山狼、虫、虎、豹等七十二洞妖王都来奉其为尊'vocabulary = list(set(list(s)))
n = 5
m = len(vocabulary)data_list = []
for i in range(len(s)-n):data_list.append([s[i:i+n], s[i+n]])## 准备数据
## [['东胜神洲傲', '来'], ['胜神洲傲来', '国'], ['神洲傲来国', '海']]x_train = np.array(data_list)[:,0]
y_train = np.array(data_list)[:,1]def get_one_hot(lst):one_hot_list = []for item in lst:one_hot = [0] * len(vocabulary)ix = vocabulary.index(item)one_hot[ix] = 1one_hot_list.append(one_hot)return one_hot_listx_train = [get_one_hot(item) for item in x_train]
y_train = [vocabulary.index(item) for item in y_train]## 建立模型
class Embedding(tf.keras.layers.Layer):def __init__(self, out_shape, **kwargs):super().__init__(**kwargs)self.out_shape = out_shapedef build(self, input_shape):self.H = self.add_weight(shape=[input_shape[-1], self.out_shape],initializer=tf.initializers.glorot_normal(),)def call(self, inputs):return tf.matmul(inputs, self.H)model = tf.keras.Sequential([tf.keras.layers.Input(shape=(n, m)),Embedding(200),tf.keras.layers.Flatten(),tf.keras.layers.Dense(200, activation='tanh'),tf.keras.layers.Dense(m, activation='softmax'),
])model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics='accuracy')
history = model.fit(x=x_train, y=y_train, epochs=100, verbose=0)
pd.DataFrame(history.history).plot()## 预测模型
s = '边有一花果'
vocabulary[model.predict([get_one_hot(s)])[0].argmax()] 
# '山'

二、论文解读

2.1 目标

这篇论文的目的是:已知一段文本序列,求文本序列下一个词出现的概率,这里我们很容易就想到一个概率公式 P ( x n ∣ x n − 1 , x n − 2 , … , x 1 ) P(x_n|x_{n-1},x_{n-2},\dots,x_1) P(xnxn1,xn2,,x1).虽然用这个公式从现在看来有很多的毛病,但是要考虑到这是一篇2000年的论文.

三、过程实现

3.1 Tensorflow模型

n = 预测句子长度
m = 词表维度
class Embedding(tf.keras.layers.Layer):def __init__(self, out_shape, **kwargs):super().__init__(**kwargs)self.out_shape = out_shapedef build(self, input_shape):self.H = self.add_weight(shape=[input_shape[-1], self.out_shape],initializer=tf.initializers.glorot_normal(),)def call(self, inputs):return tf.matmul(inputs, self.H)model = tf.keras.Sequential([tf.keras.layers.Input(shape=(n, m)),Embedding(200),tf.keras.layers.Flatten(),tf.keras.layers.Dense(200, activation='tanh'),tf.keras.layers.Dense(m, activation='softmax'),
])

3.2 数据准备

从西游记里面选了一段文字,准备数据 input_shape=[n,m]

s = '东胜神洲傲来国海边有一花果山,山顶一石,受日月精华,产下一个石猴,石猴勇探瀑布飞泉,发现水帘洞,被众猴奉为美猴王,猴王领群猴在山中自由自在数百载,偶闻仙、佛、神圣三者可躲过轮回,与天地山川齐寿,遂独自乘筏泛海,历南赡部洲,至西牛贺洲,终在灵台方寸山斜月三星洞,为菩提祖师收留,赐其法名孙悟空,悟空在三星洞悟彻菩提妙理,学到七十二般变化和筋斗云之术后返回花果山,一举灭妖魔混世魔王,花果山狼、虫、虎、豹等七十二洞妖王都来奉其为尊'vocabulary = list(set(list(s)))
n = 5
m = len(vocabulary)data_list = []
for i in range(len(s)-n):data_list.append([s[i:i+n], s[i+n]])x_train = np.array(data_list)[:,0]
y_train = np.array(data_list)[:,1]def get_one_hot(lst):one_hot_list = []for item in lst:one_hot = [0] * len(vocabulary)ix = vocabulary.index(item)one_hot[ix] = 1one_hot_list.append(one_hot)return one_hot_listx_train = [get_one_hot(item) for item in x_train]
y_train = [vocabulary.index(item) for item in y_train]

3.3 数据训练和预测

model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics='accuracy')
history = model.fit(x=x_train, y=y_train, epochs=100, verbose=0)
pd.DataFrame(history.history).plot()s = '边有一花果'
vocabulary[model.predict([get_one_hot(s)])[0].argmax()]
# 输出山

应该为山,预测结果与实际一致.

训练loss和accuracy如下:

数据比较小,很好训练

四、整体总结

论文太早了,实现没难度!

这篇关于[NNLM]论文实现:A Neural Probabilistic Language Model [Yoshua Bengio, Rejean Ducharme, Pascal Vincent]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720092

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S