图表示学习 Graph Representation Learning chapter2 背景知识和传统方法

本文主要是介绍图表示学习 Graph Representation Learning chapter2 背景知识和传统方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图表示学习 Graph Representation Learning chapter2 背景知识和传统方法

  • 2.1 图统计和核方法
    • 2.1.1 节点层次的统计和特征
      • 节点的度
    • 节点中心度
    • 聚类系数
    • Closed Triangles, Ego Graphs, and Motifs
  • 图层次的特征和图的核
    • 节点袋
    • Weisfieler–Lehman核
    • Graphlets和基于路径的方法
  • 邻域重叠检测

2.1 图统计和核方法

2.1.1 节点层次的统计和特征

在这里插入图片描述

节点的度

d u = ∑ v ∈ V A ( u , v ) (2.1) d_u = \sum_{v\in \mathcal{V}} A(u, v)\tag{2.1} du=vVA(u,v)(2.1)

需要说明的是,在有向和加权图中,度可以区分为不同的概念。例如入度和出度之类的。不管怎么说,这个特征在传统机器学习中都是十分重要的。

节点中心度

e u = 1 λ ∑ v ∈ V A ( u , v ) e v , ∀ u ∈ V (2.2) e_u = \frac{1}{\lambda}\sum_{v\in \mathcal{V}}A(u, v)e_v, \forall u\in \mathcal{V}\tag{2.2} eu=λ1vVA(u,v)ev,uV(2.2)

一种常见的方式是利用特征向量中心度,我们定义每个节点的中心度为周围所有中心度的均值,其中 λ \lambda λ是一个常数。

求解这一过程,可以写作如下形式: λ e = A e (2.3) \lambda e = Ae\tag{2.3} λe=Ae(2.3)
如果我们期望所有的中心度都是正的,我们可以应用Perron-Frobenius Theorem,即对A求解特征向量。
此外我们也可以通过迭代法如下: e ( t + 1 ) = A e ( t ) (2.4) e^{(t+1)}=Ae^{(t)}\tag{2.4} e(t+1)=Ae(t)(2.4)

如果我们设 e 0 = ( 1 , 1 , . . . , 1 ) T e^0=(1,1,...,1)^T e0=(1,1,...,1)T那么每次迭代后的结果是截至T步时,经过的次数,由此可以得到重要性。

聚类系数

用于衡量节点局部邻域封闭三角形的比例。

c u = ∣ ( v 1 , v 2 ) ∈ E : v 1 , v 2 ∈ N ( u ) ∣ C d u 2 (2.5) c_u=\frac{|(v_1,v_2)\in \mathcal{E}:v_1,v_2\in \mathcal{N}(u)|}{C_{d_u}^2}\tag{2.5} cu=Cdu2(v1,v2)E:v1,v2N(u)(2.5)
其中 N ( u ) = { v ∈ V : ( u , v ) ∈ E } \mathcal{N}(u)=\{v\in \mathcal{V}:(u,v)\in \mathcal{E}\} N(u)={vV:(u,v)E}也就是所有的相邻节点构成的集合。

这一特征描述了节点附近结构的紧密程度。

Closed Triangles, Ego Graphs, and Motifs

图层次的特征和图的核

节点袋

单纯综合节点的特征。

Weisfieler–Lehman核

一种迭代邻域聚合方法。
在这里插入图片描述

Graphlets和基于路径的方法

Graphlets:计算不同子图结构出现次数。具体方式为,枚举所有可能的子图结构,然后统计出现的次数。

基于路径,则是统计类似于最短路之类的。

邻域重叠检测

未完待续。

这篇关于图表示学习 Graph Representation Learning chapter2 背景知识和传统方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719609

相关文章

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Oracle 通过 ROWID 批量更新表的方法

《Oracle通过ROWID批量更新表的方法》在Oracle数据库中,使用ROWID进行批量更新是一种高效的更新方法,因为它直接定位到物理行位置,避免了通过索引查找的开销,下面给大家介绍Orac... 目录oracle 通过 ROWID 批量更新表ROWID 基本概念性能优化建议性能UoTrFPH优化建议注

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

在 PyQt 加载 UI 三种常见方法

《在PyQt加载UI三种常见方法》在PyQt中,加载UI文件通常指的是使用QtDesigner设计的.ui文件,并将其转换为Python代码,以便在PyQt应用程序中使用,这篇文章给大家介绍在... 目录方法一:使用 uic 模块动态加载 (不推荐用于大型项目)方法二:将 UI 文件编译为 python 模

Python将字库文件打包成可执行文件的常见方法

《Python将字库文件打包成可执行文件的常见方法》在Python打包时,如果你想将字库文件一起打包成一个可执行文件,有几种常见的方法,具体取决于你使用的打包工具,下面就跟随小编一起了解下具体的实现方... 目录使用 PyInstaller基本方法 - 使用 --add-data 参数使用 spec 文件(

Python的pip在命令行无法使用问题的解决方法

《Python的pip在命令行无法使用问题的解决方法》PIP是通用的Python包管理工具,提供了对Python包的查找、下载、安装、卸载、更新等功能,安装诸如Pygame、Pymysql等Pyt... 目录前言一. pip是什么?二. 为什么无法使用?1. 当我们在命令行输入指令并回车时,一般主要是出现以

通过C#获取Excel单元格的数据类型的方法详解

《通过C#获取Excel单元格的数据类型的方法详解》在处理Excel文件时,了解单元格的数据类型有助于我们正确地解析和处理数据,本文将详细介绍如何使用FreeSpire.XLS来获取Excel单元格的... 目录引言环境配置6种常见数据类型C# 读取单元格数据类型引言在处理 Excel 文件时,了解单元格

MySQL连接池(Pool)常用方法详解

《MySQL连接池(Pool)常用方法详解》本文详细介绍了MySQL连接池的常用方法,包括创建连接池、核心方法连接对象的方法、连接池管理方法以及事务处理,同时,还提供了最佳实践和性能提示,帮助开发者构... 目录mysql 连接池 (Pool) 常用方法详解1. 创建连接池2. 核心方法2.1 pool.q

Spring Boot Controller处理HTTP请求体的方法

《SpringBootController处理HTTP请求体的方法》SpringBoot提供了强大的机制来处理不同Content-Type​的HTTP请求体,这主要依赖于HttpMessageCo... 目录一、核心机制:HttpMessageConverter​二、按Content-Type​处理详解1.

查看MySQL数据库版本的四种方法

《查看MySQL数据库版本的四种方法》查看MySQL数据库的版本信息可以通过多种方法实现,包括使用命令行工具、SQL查询语句和图形化管理工具等,以下是详细的步骤和示例代码,需要的朋友可以参考下... 目录方法一:使用命令行工具1. 使用 mysql 命令示例:方法二:使用 mysqladmin 命令示例:方