【图论经典题目讲解】CF786B - Legacy 一道线段树优化建图的经典题目

2024-02-17 06:36

本文主要是介绍【图论经典题目讲解】CF786B - Legacy 一道线段树优化建图的经典题目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C F 786 B − L e g a c y \mathrm{CF786B - Legacy} CF786BLegacy

D e s c r i p t i o n \mathrm{Description} Description

给定 1 1 1 n n n 个点的有向图,初始没有边,接下来有 q q q 次操作,形式如下:

  • 1 u v w 表示从 u u u v v v 连接 1 1 1 条长度为 w w w 的有向边
  • 2 u l r w 表示从 u u u i i i i ∈ [ l , r ] i\in [l,r] i[l,r])连接 1 1 1 条长度为 w w w 的有向边
  • 3 u l r w 表示从 i i i i ∈ [ l , r ] i\in [l,r] i[l,r])向 u u u 连接 1 1 1 条长度为 w w w 的有向边

输出从 S S S 点到 i i i 点( i ∈ [ 1 , n ] i\in [1,n] i[1,n])的最短路长度。

S o l u t i o n \mathrm{Solution} Solution

观察可知,最多会建立 1 0 5 × 1 0 5 = 1 0 10 10^5\times 10^5 = 10^{10} 105×105=1010 条边,故必定超时。

此时,需要使用 线段树优化建图,这里展开简单说一下:

对于 1 1 1 棵存储点为 1 ∼ 4 1\sim 4 14 的线段树,形式如下:

image-20240215212043652

如果当前为 2 2 2 操作,且为 1 ∼ 3 1\sim 3 13 每个点连向 4 4 4,权值为 10 10 10,操作如下所示:

image-20240215212212466

即,将区间 1 ∼ 2 1\sim 2 12 3 ∼ 3 3\sim 3 33 连向 4 4 4 即可,不过此时发现,图中为有向图,而现在是无向图所以我们要对于图中的每一条边标记方向和权值(这里线段树就是一张图,叶子节点就是我们的 1 ∼ n 1\sim n 1n 节点)

image-20240215212641895

其中,为何线段树上的边方向都为向父亲节点?那是因为 1 1 1 2 2 2 号点只有这样才能顺着边走到 4 4 4 号节点,对于为何权值设为 0 0 0,因为这是 1 1 1 条虚边(不存在的),不能对最短路做出任何贡献。

不过,上文是区间连节点,当是节点连区间的时候(操作 3 3 3)边都是正好反着的,所以再建 1 1 1 棵线段树即可(不过没必要真的去再建 1 1 1 棵,具体见代码)

C o d e Code Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int SIZE = 4e6 + 10, SIZE2 = 1e6 + 10;int N, Q, S;
int h[SIZE2], e[SIZE], ne[SIZE], w[SIZE], idx;
int Id[2], Dist[SIZE2], Vis[SIZE2];
struct Segment
{int l, r;int L, R;
}Tree[SIZE2 << 2];void add(int a, int b, int c)
{e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}int Build(int l, int r, int Sd, int k)
{if (l == r){Tree[l] = {l, l};return l;}int P = ++ Id[k];Tree[P] = {l, r};int mid = l + r >> 1;Tree[P].L = Build(l, mid, Sd, k), Tree[P].R = Build(mid + 1, r, Sd, k);if (!Sd) add(Tree[P].L, P, 0), add(Tree[P].R, P, 0);else add(P, Tree[P].L, 0), add(P, Tree[P].R, 0);return P;
}void Add(int u, int l, int r, int p, int w, int Sd)
{if (Tree[u].l >= l && Tree[u].r <= r){if (!Sd) add(u, p, w);else add(p, u, w);return;}int mid = Tree[u].l + Tree[u].r >> 1;if (mid >= l) Add(Tree[u].L, l, r, p, w, Sd);if (mid < r) Add(Tree[u].R, l, r, p, w, Sd);
}void Dijkstra(int S)
{memset(Dist, 0x3f, sizeof Dist);memset(Vis, 0, sizeof Vis);priority_queue<PII, vector<PII>, greater<PII>> Heap;Heap.push({0, S}), Dist[S] = 0;while (Heap.size()){auto Tmp = Heap.top();Heap.pop();int u = Tmp.second;if (Vis[u]) continue;Vis[u] = 1;for (int i = h[u]; ~i; i = ne[i]){int j = e[i];if (Dist[j] > Dist[u] + w[i]){Dist[j] = Dist[u] + w[i];Heap.push({Dist[j], j});}}}
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);memset(h, -1, sizeof h);cin >> N >> Q >> S;if (N == 1){cout << 0 << endl;return 0;}Id[0] = N;Build(1, N, 0, 0);Id[1] = Id[0];Build(1, N, 1, 1);while (Q --){int Op, v, u, l, r, w;cin >> Op >> u;if (Op == 1){cin >> v >> w;add(u, v, w);}else if (Op == 2){cin >> l >> r >> w;Add(Id[0] + 1, l, r, u, w, 1);}else{cin >> l >> r >> w;Add(N + 1, l, r, u, w, 0);}}Dijkstra(S);for (int i = 1; i <= N; i ++)if (Dist[i] >= 1e18) cout << -1 << " ";else cout << Dist[i] << " ";return 0;
}

这篇关于【图论经典题目讲解】CF786B - Legacy 一道线段树优化建图的经典题目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/716955

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

MySQL连表查询之笛卡尔积查询的详细过程讲解

《MySQL连表查询之笛卡尔积查询的详细过程讲解》在使用MySQL或任何关系型数据库进行多表查询时,如果连接条件设置不当,就可能发生所谓的笛卡尔积现象,:本文主要介绍MySQL连表查询之笛卡尔积查... 目录一、笛卡尔积的数学本质二、mysql中的实现机制1. 显式语法2. 隐式语法3. 执行原理(以Nes

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决