mysql 优化大师执行计划_阿里云数据库挑战赛quot;SQL优化大师quot;获奖案例

本文主要是介绍mysql 优化大师执行计划_阿里云数据库挑战赛quot;SQL优化大师quot;获奖案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

2017/07在阿里云举办的第一届“阿里云数据库挑战赛第一季“慢SQL性能优化赛”期间,我得到知数堂叶老师的鼎力相助,成功突破重围,过关斩将,获得“SQL优化大师”荣誉称号!

阿里云数据库挑战赛

第一季“SQL优化大师”

通过这次挑战赛的实践,加上中间叶老师的指导,让我增进了对SQL优化的认识。

在此,分享下我的SQL优化过程,希望能给各位提供一些SQL优化方面的思路,大家共同交流进步。

二、优化过程

1、优化前

原始SQL

select a.seller_id,a.seller_name,b.user_name,c.state

from a,b,c

where a.seller_name=b.seller_name and

b.user_id=c.user_id and

c.user_id=17 and

a.gmt_create BETWEEN DATE_ADD(NOW(), INTERVAL - 600 MINUTE)

AND DATE_ADD(NOW(), INTERVAL 600 MINUTE)

order by a.gmt_create

原始表结构

create table a(

id int auto_increment,

seller_id bigint,

seller_name varchar(100) collate utf8_bin ,

gmt_create varchar(30),

primary key(id)) character set utf8;

create table b (

id int auto_increment,

seller_name varchar(100),

user_id varchar(50),

user_name varchar(100),

sales bigint,

gmt_create varchar(30),

primary key(id)) character set utf8;

create table c (

id int auto_increment,

user_id varchar(50),

order_id varchar(100),

state bigint,

gmt_create varchar(30),

primary key(id)) character set utf8;

2、优化前的SQL执行计划

explain select a.seller_id,a.seller_name,b.user_name,c.state from a,b,c

where a.seller_name=b.seller_name and b.user_id=c.user_id

and c.user_id=17 and

a.gmt_create BETWEEN DATE_ADD(NOW(),

INTERVAL - 600 MINUTE) AND DATE_ADD(NOW(), INTERVAL 600 MINUTE)

order by a.gmt_create

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: a

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 16109

filtered: 11.11

Extra: Using where; Using temporary; Using filesort

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: b

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 16174

filtered: 100.00

Extra: Using where; Using join buffer (Block Nested Loop)

*************************** 3. row ***************************

id: 1

select_type: SIMPLE

table: c

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 359382

filtered: 1.00

Extra: Using where; Using join buffer (Block Nested Loop)

3、优化后

先看下经过优化后的终版SQL执行计划

mysql> explain select a.seller_id, a.seller_name,b.user_name,

c.state from a left join b

on (a.seller_name=b.seller_name)

left join c on (b.user_id=c.user_id)

where c.user_id='17'

and a.gmt_create BETWEEN DATE_ADD(NOW(), INTERVAL - 600 MINUTE)

AND DATE_ADD(NOW(), INTERVAL 600 MINUTE);

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: b

partitions: NULL

type: ref

possible_keys: i_seller_name,i_user_id

key: i_user_id

key_len: 3

ref: const

rows: 1

filtered: 100.00

Extra: Using where

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: c

partitions: NULL

type: ref

possible_keys: i_user_id

key: i_user_id

key_len: 3

ref: const

rows: 1

filtered: 100.00

Extra: Using index condition

*************************** 3. row ***************************

id: 1

select_type: SIMPLE

table: a

partitions: NULL

type: ref

possible_keys: i_seller_name

key: i_seller_name

key_len: 25

ref: test1.b.seller_name

rows: 1

filtered: 11.11

Extra: Using where

优化完后这个SQL毫秒级出结果(看下方profiling截图)

ecf47c429bd0350545f6bd9292408d33.png

4、优化思路

硬件&系统环境

硬盘:SSD(pcie)

内存:16G

CPU:8核

操作系统:选择Centos7系统,xfs文件系统

内核参数做些调整:

vm.swappiness = 5 #建议设置5-10

io schedule选择 deadline/noop 之一

MySQL 版本选择

推荐MySQL 5.6以上的版本,最好是MySQL 5.7。

MySQL 5.6优化器增加了ICP、MRR、BKA等特性,5.7在性能上有更多提升。

MySQL参数调整

innodb_buffer_pool_size #物理内存的50% - 70%

innodb_flush_log_at_trx_commit = 1

innodb_max_dirty_pages_pct = 50 #建议不高于50

innodb_io_capacity = 5000 #SSD盘

#大赛要求关闭QC

query_cache_size = 0

query_cache_type = 0

SQL调优过程详解

首先,我们看到原来的执行计划中3个表的查询都是全表扫描(type = ALL),所以先把关联查询字段以及WHERE条件中的字段加上索引。

1、添加索引

alter table a add index i_seller_name(seller_name);

alter table a add index i_seller_id(seller_id);

alter table b add index i_seller_name(seller_name);

alter table b add index i_user_id(user_id);

alter table c add index i_user_id(user_id);

alter table c add index i_state(state);

添加完索引后,再看下新的执行计划:

explain select a.seller_id,

a.seller_name,b.user_name ,c.state from a

left join b on (a.seller_name=b.seller_name)

left join c on( b.user_id=c.user_id ) where c.user_id='17'

and a.gmt_create BETWEEN DATE_ADD(NOW(),

INTERVAL - 600 MINUTE) AND

DATE_ADD(NOW(), INTERVAL 600 MINUTE)\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: b

partitions: NULL

type: ref

possible_keys: i_user_id

key: i_user_id

key_len: 53

ref: const

rows: 1

filtered: 100.00

Extra: NULL

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: c

partitions: NULL

type: ref

possible_keys: i_user_id

key: i_user_id

key_len: 53

ref: const

rows: 1

filtered: 100.00

Extra: NULL

*************************** 3. row ***************************

id: 1

select_type: SIMPLE

table: a

partitions: NULL

type: ref

possible_keys: i_seller_name

key: i_seller_name

key_len: 303

ref: func

rows: 947

filtered: 11.11

Extra: Using index condition; Using where

我们注意到执行计划中3个表的key_len列都太大了,最小也有53字节,最大303字节,要不要这么夸张啊~

2、修改字符集、修改字段数据类型

默认字符集是utf8(每个字符最多占3个字节),因为该表并不存储中文,因此只需要用latin1字符集(最大占1个字节)。

除此外,我们检查3个表的字段数据类型,发现有些varchar(100)的列实际最大长度并没这么大,有些实际存储datetime数据的却采用varchar(30)类型,有些用bigint/int就足够的也采用varchar类型,真是醉了。于是分别把这些数据类型改为更合适的类型。

修改表字符集和调整各个列数据类型很重要的作用是可以减小索引的key_len,从而减少关联的字段的字节,减少内存消耗。

优化后的表结构

CREATE TABLE `a` (

`id` int NOT NULL AUTO_INCREMENT,

`seller_id` int(6) DEFAULT NULL,

`seller_name` char(8) DEFAULT NULL,

`gmt_create` datetime DEFAULT NULL,

PRIMARY KEY (`id`),

KEY `i_seller_id` (`seller_id`),

KEY `i_seller_name` (`seller_name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE TABLE `b` (

`id` int NOT NULL AUTO_INCREMENT,

`seller_name` char(8) DEFAULT NULL,

`user_id` smallint(5) DEFAULT NULL,

`user_name` char(10) DEFAULT NULL,

`sales` int(11) DEFAULT NULL,

`gmt_create` datetime DEFAULT NULL,

PRIMARY KEY (`id`),

KEY `i_seller_name` (`seller_name`),

KEY `i_user_id` (`user_id`),

KEY `i_user_name` (`user_name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE TABLE `c` (

`id` int NOT NULL AUTO_INCREMENT,

`user_id` smallint(5) DEFAULT NULL,

`order_id` char(10) DEFAULT NULL,

`state` int(11) DEFAULT NULL,

`gmt_create` datetime DEFAULT NULL,

PRIMARY KEY (`id`),

KEY `i_user_id` (`user_id`),

KEY `i_state` (`state`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

以上是我在阿里云数据库挑战赛中的获奖案例,感谢在比赛过程中叶老师对我的提点和帮助,同时非常感谢知数堂教授SQL优化技能!

最后,我想说的是,只要掌握SQL优化的几个常规套路,你也可以完成绝大多数的SQL优化工作滴!

附录:3个表数据初始化

insert into a (seller_id,seller_name,gmt_create) values (100000,'uniqla','2017-01-01');

insert into a (seller_id,seller_name,gmt_create) values (100001,'uniqlb','2017-02-01');

insert into a (seller_id,seller_name,gmt_create) values (100002,'uniqlc','2017-03-01');

insert into a (seller_id,seller_name,gmt_create) values (100003,'uniqld','2017-04-01');

...重复N次写入

insert into b (seller_name,user_id,user_name,sales,gmt_create) values ('niqla','1','a',1,now());

insert into b (seller_name,user_id,user_name,sales,gmt_create) values ('niqlb','2','b',3,now());

insert into b (seller_name,user_id,user_name,sales,gmt_create) values ('niqlc','3','c',1,now());

insert into b (seller_name,user_id,user_name,sales,gmt_create) values ('niqld','4','d',4,now());

...重复N次写入

insert into c (user_id,order_id,state,gmt_create) values( 21,1,0 ,now() );

insert into c (user_id,order_id,state,gmt_create) values( 22,2,0 ,now() );

insert into c (user_id,order_id,state,gmt_create) values( 33,3,0 ,now() );

insert into c (user_id,order_id,state,gmt_create) values( 43,4,0 ,now() );

...重复N次写入

原文发布时间为:2017-09-30

本文作者:田帅萌

本文来自云栖社区合作伙伴“老叶茶馆”,了解相关信息可以关注“老叶茶馆”微信公众号

这篇关于mysql 优化大师执行计划_阿里云数据库挑战赛quot;SQL优化大师quot;获奖案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/716407

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优