现代控制理论(机器人方向)考核要求与Matlab(Octave)简明教程

本文主要是介绍现代控制理论(机器人方向)考核要求与Matlab(Octave)简明教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课程全部资料请查阅课程分类:https://blog.csdn.net/zhangrelay/article/category/6161998


现代控制理论成绩构成为如下四个部分:

总成绩根据平时成绩(包括考勤、作业、课堂测试等占30%)、编程考核30%、创新实践报告10%、期末考试(占30%)综合评定。期末考试形式采用闭卷笔试。

创新实践报告模版:https://share.weiyun.com/5tHl9I6

Octave Online(Matlab):https://octave-online.net/

编程示例:https://blog.csdn.net/ZhangRelay/article/details/51615389

成绩构成说明

Matlab简明教程(对应教材):

可以使用电脑系统Windows/MacOS/Linux,也可以使用手机系统Android/ios等实现。

>> connector on
首次运行 MATLAB Connector 时,必须指定密码。
请输入在设备上设置 MATLAB Mobile 时所用的同一密码。
Password: *************
DNS 名称: 
IP 地址: 192.168.x.xxx
使用此链接可测试 MATLAB Connector:
http://192.168.x.xxx:31415/
如果测试成功,但 MATLAB Mobile 无法连接,
可能是因为您的计算机有多个 IP 地址。要确定
正确的地址,请参阅确定计算机的 DNS 名称或 IP 地址。

程序代码
执行结果
Python I
Python II

倒立摆案例:

A=[ 0 1 0 0; 0 0 0 0;0 0 0 1; 0 0 29.4 0]
B=[0 ; 1 ; 0 ;3 ]
C=[1 0 0 0; 0 0 1 0]
D=[0 ; 0]syms t
eAt=expm(A*t)ctrb(A,B)rank(ctrb(A,B))
rank(obsv(A,C))step(A, B ,C ,D)
flag=0;
[z,p,k]=ss2zp(A,B,C,D,1);
disp('系统零点,极点和增益为:');
z
p
k
n=length(A);
for ii=1:nif real(p(ii))>0flag=1;end
end
if flag==1disp('系统不稳定');
elsedisp('系统稳定');
end% Q=eye(4,4);
% P=lyap(A,Q);
% flag=0;
% n=length(A);
% for i=1:n
%     det(P(1:i,1:i))
%     if(det(P(1:i,1:i))<=0)
%         flag=1;
%     end
% end
% if flag==1
%     disp('系统不稳定');
% else
%     disp('系统稳定');
% endP=[-10 -10 -2-2*sqrt(3)*i -2+2*sqrt(3)*i]
K=acker(A,B,P)A =0    1.0000         0         00         0         0         00         0         0    1.00000         0   29.4000         0B =0103C =1     0     0     00     0     1     0D =00eAt =[ 1, t,                                                                                                          0,                                                                                                      0]
[ 0, 1,                                                                                                          0,                                                                                                      0]
[ 0, 0,                                           exp(-(7*3^(1/2)*5^(1/2)*t)/5)/2 + exp((7*3^(1/2)*5^(1/2)*t)/5)/2, (3^(1/2)*5^(1/2)*exp((7*3^(1/2)*5^(1/2)*t)/5))/42 - (3^(1/2)*5^(1/2)*exp(-(7*3^(1/2)*5^(1/2)*t)/5))/42]
[ 0, 0, (7*3^(1/2)*5^(1/2)*exp((7*3^(1/2)*5^(1/2)*t)/5))/10 - (7*3^(1/2)*5^(1/2)*exp(-(7*3^(1/2)*5^(1/2)*t)/5))/10,                                       exp(-(7*3^(1/2)*5^(1/2)*t)/5)/2 + exp((7*3^(1/2)*5^(1/2)*t)/5)/2]ans =0    1.0000         0         01.0000         0         0         00    3.0000         0   88.20003.0000         0   88.2000         0ans =4ans =4系统零点,极点和增益为:z =5.4222    0.0000-5.4222   -0.0000p =5.4222-5.422200k =1.00003.0000系统不稳定P =-10.0000 + 0.0000i -10.0000 + 0.0000i  -2.0000 - 3.4641i  -2.0000 + 3.4641iK =-54.4218  -24.4898   93.2739   16.1633

课后习题参考,编程示例不再重复列出。

第一章:状态空间表达式

num为传递函数分子参数,den为传递函数分母参数,tf为传递函数,ss为状态空间,

tf2ss传递函数转状态空间,ss2tf状态空间转传递函数。

掌握系统框图、模拟结构图、状态方程组、状态空间表达式(不唯一)、传递函数等。

% 1.6
num=[6];
den=[1 6 41 7];
[A B C D]=tf2ss(num,den)%1.7
num=[360 440];
den=[1 28 196 740];
[A B C D]=tf2ss(num,den)%1.8%1.9
A=[0 1 -1; -6 -11 6; -6 -11 5];
[P J]=eig(A)
inv(P)*[0;0;1]
[1 0 0]*P%1.10
[T J]=jordan(A)
inv(T)*[0;0;1]
[1 0 0]*T%1.11
A=[0 1 0; 0 0 1; 2 3 0];
[T J]=jordan(A)
%[P J]=eig(A)

第二章:表达式的解

step求解阶跃,plot画图。

%2.1 2.2 2.4 2.6
syms t
A=[0 1; -2 -3]
eAt=expm(A*t)%2.3 2.7
syms t
A=[0 1 0; 0 0 1; 2 -5 4]
eAt=expm(A*t)%2.8
syms t
A=[0 1; -2 -3]
B=[0;1]
x0=[0;0]
eAt=expm(A*t)
xt=eAt*x0+inv(A)*(eAt-1)*B*1

修订:

%2.8
syms t
A=[0 1; -2 -3]
B=[0;1]
x0=[0;0]
eAt=expm(A*t)
xt=eAt*x0+int(eAt*B*1,t)
%xt=eAt*x0+inv(A)*(eAt-1)*B*1%xt2.6 
syms t
A=[0 1; 0 0]
B=[0;1]
C=[1 0]
x0=[1;1]
eAt=expm(A*t)
xt=eAt*x0+int(eAt*B*1,t)
%xt=eAt*x0+inv(A)*(eAt-1)*B*1
yt=C*xt

第三章:能控性和能观性

%3.2
A=[-4 5;1 0]
B=[-5;1]
[T,J]=jordan(A)
inv(T)*B%3.5
M=[B, A*B]
rank(M)%3.8
A=[1 2 1; 0 1 0; 1 0 3]
B=[1 0; 0 1; 0 0]
M=[B A*B A*A*B]
rank(M)

第四章:稳定性和李雅普诺夫法

%4-1
A=[-1 0; 0 1];
B=[1;1];
C=[1 0];
D=[0];
flag=0;
[z,p,k]=ss2zp(A,B,C,D,1);
disp('系统零点,极点和增益为:');
z
p
k
n=length(A);
for i=1:nif real(p(i))>0flag=1;end
end
if flag==1disp('系统不稳定');
elsedisp('系统稳定');
end%4-5
A=[0 1; -1 -1];
Q=eye(2,2);
P=lyap(A,Q);
flag=0;
n=length(A);
for i=1:ndet(P(1:i,1:i))if(det(P(1:i,1:i))<=0)flag=1;end
end
if flag==1disp('系统不稳定');
elsedisp('系统稳定');
end%4-6
A=[0 1; -1 0];
Q=eye(2,2);
P=lyap(A,Q);
flag=0;
n=length(A);
for i=1:ndet(P(1:i,1:i))if(det(P(1:i,1:i))<=0)flag=1;end
end
if flag==1disp('系统不稳定');
elsedisp('系统稳定');
end%4-8
A=[1 1; -1 1];
Q=eye(2,2);
P=lyap(A,Q);
flag=0;
n=length(A);
for i=1:ndet(P(1:i,1:i))if(det(P(1:i,1:i))<=0)flag=1;end
end
if flag==1disp('系统不稳定');
elsedisp('系统稳定');
end%4-9
A=[0 1; -2 -3];
Q=eye(2,2);
P=lyap(A,Q);
flag=0;
n=length(A);
for i=1:ndet(P(1:i,1:i))if(det(P(1:i,1:i))<=0)flag=1;end
end
if flag==1disp('系统不稳定');
elsedisp('系统稳定');
end

第五章:线性定常系统综合

%5-2
A=[0 1 0;0 0 1;0 -2 -3];
B=[0;0;1];
P=[-2 -1+1i -1-1i];
M=[B,A*B,A*A*B];
n=length(A);
rank(M)
if rank(M)==ndisp('系统可控')disp('状态反馈')K=acker(A,B,P)
elsedisp('系统不可控')[Ac,Bc,Cc,T,K]=ctrbf(A,B,C)
end    
Ac=A-B*K
disp('配置后极点')
eig(Ac)

第六章:最优控制

-未完待续-


 

这篇关于现代控制理论(机器人方向)考核要求与Matlab(Octave)简明教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715454

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker