【第九章——PyeCharts】【最新!黑马程序员Python自学课程笔记】课上笔记+案例源码+作业源码

本文主要是介绍【第九章——PyeCharts】【最新!黑马程序员Python自学课程笔记】课上笔记+案例源码+作业源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第九章-数据可视化PyeCharts入门

9.1案例介绍

9.2JSON数据格式的转换

"""
演示json数据和python字典的相互转换
"""
import json
# 准备列表,列表内每一个元素都是字典,将其转换为json
data=[{"name":"张大帅","age":11},{"name":"王小丫","age":14},{"name":"李四","age":15}]
json_str=json.dumps(data,ensure_ascii=False)
print(type(json_str))
print(json_str)# 准备字典,将字典转换为json
d={"name":"周杰伦","addr":"台北"}
json_str=json.dumps(d,ensure_ascii=False)
print(type(json_str))
print(json_str)# 将json字符串转换为python数据类型[{k:v,k:v},{k:v,k:v}]
s='[{"name":"张大帅","age":11},{"name":"王小丫","age":14},{"name":"李四","age":15}]'
l=json.loads(s)
print(type(l))
print(l)# 将json字符串转换为python数据类型{k:v,k:v}
s='{"name":"周杰伦","addr":"台北"}'
d=json.loads(s)
print(type(d))
print(d)

9.3PyeCharts模块介绍

画廊:Document (pyecharts.org)

介绍文档:pyecharts - A Python Echarts Plotting Library built with love.

9.4PyeCharts的入门使用

"""
演示pyecharts的基础入门
"""
# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts# 创建一个折线图对象
Line=Line()
# 给折线图对象添加x轴的数据
Line.add_xaxis(["中国","美国","英国"])
# 给折线图对象添加y轴的数据
Line.add_yaxis("GDP",[30,20,10])# 设置全局配置项 set_global_opts来设置,position
Line.set_global_opts(title_opts=TitleOpts(title="GDP展示",pos_left="center",pos_bottom="1%"),legend_opts=LegendOpts(is_show=True),toolbox_opts=ToolboxOpts(is_show=True),visualmap_opts=VisualMapOpts(is_show=True)
)# 通过render方法,将代码生成图像
Line.render()

9.5数据准备

懒人工具JSON解析器(ab173):懒人工具-json在线解析-在线JSON格式化工具-json校验-程序员必备 (kuquidc.com)

"""
演示可视化需求1:折线图开发
"""
import json
# 处理数据
f_us=open("E:/美国.txt","r",encoding="UTF-8")
us_data=f_us.read() # 美国的全部内容
# 去掉不合JSON规范的开头
us_data=us_data.replace("jsonp_1629344292311_69436(","")
# 去掉不合JSON规范的结尾
us_data=us_data[:-2]
# JSON转Python字典
us_dict=json.loads(us_data)# 获取trend key
us_trend_data=us_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)# 获取日期数据,用于x轴,取2020年(到315下标结束)
us_x_data=us_trend_data['updateDate'][:314]# 获取确认数据,用于y轴,取2020年(到315下标结束)
us_y_data=us_trend_data['list'][0]['data'][:314]# 生成图表

9.6生成折线图

"""
演示可视化需求1:折线图开发
"""
import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LabelOpts# 处理数据
f_us=open("E:/美国.txt","r",encoding="UTF-8")
us_data=f_us.read() # 美国的全部内容f_jp=open("E:/日本.txt","r",encoding="UTF-8")
jp_data=f_jp.read() # 日本的全部内容f_in=open("E:/印度.txt","r",encoding="UTF-8")
in_data=f_in.read() # 印度的全部内容# 去掉不合JSON规范的开头
us_data=us_data.replace("jsonp_1629344292311_69436(","")
jp_data=jp_data.replace("jsonp_1629350871167_29498(","")
in_data=in_data.replace("jsonp_1629350745930_63180(","")# 去掉不合JSON规范的结尾
us_data=us_data[:-2]
jp_data=jp_data[:-2]
in_data=in_data[:-2]# JSON转Python字典
us_dict=json.loads(us_data)
jp_dict=json.loads(jp_data)
in_dict=json.loads(in_data)# 获取trend key
us_trend_data=us_dict['data'][0]['trend']
jp_trend_data=jp_dict['data'][0]['trend']
in_trend_data=in_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)# 获取日期数据,用于x轴,取2020年(到315下标结束)
us_x_data=us_trend_data['updateDate'][:314]
jp_x_data=jp_trend_data['updateDate'][:314]
in_x_data=in_trend_data['updateDate'][:314]# 获取确认数据,用于y轴,取2020年(到315下标结束)
us_y_data=us_trend_data['list'][0]['data'][:314]
jp_y_data=jp_trend_data['list'][0]['data'][:314]
in_y_data=in_trend_data['list'][0]['data'][:314]# 生成图表
Line=Line()  # 构建折线图对象# 添加x轴数据
Line.add_xaxis(us_x_data)   # 由于x轴是共用的,所以使用一个国家的数据即可# 添加y轴数据
Line.add_yaxis("美国确诊人数",us_y_data,label_opts=LabelOpts(is_show=False))  # 添加美国的y轴数据
Line.add_yaxis("日本确诊人数",jp_y_data,label_opts=LabelOpts(is_show=False))  # 添加日本的y轴数据
Line.add_yaxis("印度确诊人数",in_y_data,label_opts=LabelOpts(is_show=False))  # 添加印度的y轴数据# 设置全局选项
Line.set_global_opts(# 标题设置title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图",pos_left="center",pos_bottom="1%"))# 调用render方法,生成图表
Line.render()# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

这篇关于【第九章——PyeCharts】【最新!黑马程序员Python自学课程笔记】课上笔记+案例源码+作业源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715326

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客