【第九章——PyeCharts】【最新!黑马程序员Python自学课程笔记】课上笔记+案例源码+作业源码

本文主要是介绍【第九章——PyeCharts】【最新!黑马程序员Python自学课程笔记】课上笔记+案例源码+作业源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第九章-数据可视化PyeCharts入门

9.1案例介绍

9.2JSON数据格式的转换

"""
演示json数据和python字典的相互转换
"""
import json
# 准备列表,列表内每一个元素都是字典,将其转换为json
data=[{"name":"张大帅","age":11},{"name":"王小丫","age":14},{"name":"李四","age":15}]
json_str=json.dumps(data,ensure_ascii=False)
print(type(json_str))
print(json_str)# 准备字典,将字典转换为json
d={"name":"周杰伦","addr":"台北"}
json_str=json.dumps(d,ensure_ascii=False)
print(type(json_str))
print(json_str)# 将json字符串转换为python数据类型[{k:v,k:v},{k:v,k:v}]
s='[{"name":"张大帅","age":11},{"name":"王小丫","age":14},{"name":"李四","age":15}]'
l=json.loads(s)
print(type(l))
print(l)# 将json字符串转换为python数据类型{k:v,k:v}
s='{"name":"周杰伦","addr":"台北"}'
d=json.loads(s)
print(type(d))
print(d)

9.3PyeCharts模块介绍

画廊:Document (pyecharts.org)

介绍文档:pyecharts - A Python Echarts Plotting Library built with love.

9.4PyeCharts的入门使用

"""
演示pyecharts的基础入门
"""
# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts# 创建一个折线图对象
Line=Line()
# 给折线图对象添加x轴的数据
Line.add_xaxis(["中国","美国","英国"])
# 给折线图对象添加y轴的数据
Line.add_yaxis("GDP",[30,20,10])# 设置全局配置项 set_global_opts来设置,position
Line.set_global_opts(title_opts=TitleOpts(title="GDP展示",pos_left="center",pos_bottom="1%"),legend_opts=LegendOpts(is_show=True),toolbox_opts=ToolboxOpts(is_show=True),visualmap_opts=VisualMapOpts(is_show=True)
)# 通过render方法,将代码生成图像
Line.render()

9.5数据准备

懒人工具JSON解析器(ab173):懒人工具-json在线解析-在线JSON格式化工具-json校验-程序员必备 (kuquidc.com)

"""
演示可视化需求1:折线图开发
"""
import json
# 处理数据
f_us=open("E:/美国.txt","r",encoding="UTF-8")
us_data=f_us.read() # 美国的全部内容
# 去掉不合JSON规范的开头
us_data=us_data.replace("jsonp_1629344292311_69436(","")
# 去掉不合JSON规范的结尾
us_data=us_data[:-2]
# JSON转Python字典
us_dict=json.loads(us_data)# 获取trend key
us_trend_data=us_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)# 获取日期数据,用于x轴,取2020年(到315下标结束)
us_x_data=us_trend_data['updateDate'][:314]# 获取确认数据,用于y轴,取2020年(到315下标结束)
us_y_data=us_trend_data['list'][0]['data'][:314]# 生成图表

9.6生成折线图

"""
演示可视化需求1:折线图开发
"""
import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LabelOpts# 处理数据
f_us=open("E:/美国.txt","r",encoding="UTF-8")
us_data=f_us.read() # 美国的全部内容f_jp=open("E:/日本.txt","r",encoding="UTF-8")
jp_data=f_jp.read() # 日本的全部内容f_in=open("E:/印度.txt","r",encoding="UTF-8")
in_data=f_in.read() # 印度的全部内容# 去掉不合JSON规范的开头
us_data=us_data.replace("jsonp_1629344292311_69436(","")
jp_data=jp_data.replace("jsonp_1629350871167_29498(","")
in_data=in_data.replace("jsonp_1629350745930_63180(","")# 去掉不合JSON规范的结尾
us_data=us_data[:-2]
jp_data=jp_data[:-2]
in_data=in_data[:-2]# JSON转Python字典
us_dict=json.loads(us_data)
jp_dict=json.loads(jp_data)
in_dict=json.loads(in_data)# 获取trend key
us_trend_data=us_dict['data'][0]['trend']
jp_trend_data=jp_dict['data'][0]['trend']
in_trend_data=in_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)# 获取日期数据,用于x轴,取2020年(到315下标结束)
us_x_data=us_trend_data['updateDate'][:314]
jp_x_data=jp_trend_data['updateDate'][:314]
in_x_data=in_trend_data['updateDate'][:314]# 获取确认数据,用于y轴,取2020年(到315下标结束)
us_y_data=us_trend_data['list'][0]['data'][:314]
jp_y_data=jp_trend_data['list'][0]['data'][:314]
in_y_data=in_trend_data['list'][0]['data'][:314]# 生成图表
Line=Line()  # 构建折线图对象# 添加x轴数据
Line.add_xaxis(us_x_data)   # 由于x轴是共用的,所以使用一个国家的数据即可# 添加y轴数据
Line.add_yaxis("美国确诊人数",us_y_data,label_opts=LabelOpts(is_show=False))  # 添加美国的y轴数据
Line.add_yaxis("日本确诊人数",jp_y_data,label_opts=LabelOpts(is_show=False))  # 添加日本的y轴数据
Line.add_yaxis("印度确诊人数",in_y_data,label_opts=LabelOpts(is_show=False))  # 添加印度的y轴数据# 设置全局选项
Line.set_global_opts(# 标题设置title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图",pos_left="center",pos_bottom="1%"))# 调用render方法,生成图表
Line.render()# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

这篇关于【第九章——PyeCharts】【最新!黑马程序员Python自学课程笔记】课上笔记+案例源码+作业源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715326

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1