【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)

本文主要是介绍【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、前言
  • 二、实验环境
  • 三、PyTorch数据结构
    • 0、分类
    • 1、Tensor(张量)
      • 1. 维度(Dimensions)
      • 2. 数据类型(Data Types)
      • 3. GPU加速(GPU Acceleration)
        • 查看可用gpu
        • 张量移动
        • 经典语句device

一、前言

ChatGPT:

  PyTorch是一个开源的机器学习框架,广泛应用于深度学习领域。它提供了丰富的工具和库,用于构建和训练各种类型的神经网络模型。下面是PyTorch的一些详细介绍:

  • 动态计算图:PyTorch使用动态计算图的方式进行计算,这意味着在运行时可以动态地定义、修改和调整计算图,使得模型的构建和调试更加灵活和直观。
  • 强大的GPU加速支持:PyTorch充分利用GPU进行计算,可以大幅提升训练和推理的速度。它提供了针对GPU的优化操作和内存管理,使得在GPU上运行模型更加高效。
  • 自动求导:PyTorch内置了自动求导的功能,可以根据定义的计算图自动计算梯度。这简化了反向传播算法的实现,使得训练神经网络模型更加便捷。
  • 大量的预训练模型和模型库:PyTorch生态系统中有许多预训练的模型和模型库可供使用,如TorchVision、TorchText和TorchAudio等,可以方便地加载和使用这些模型,加快模型开发的速度。
  • 高级抽象接口:PyTorch提供了高级抽象接口,如nn.Module和nn.functional,用于快速构建神经网络模型。这些接口封装了常用的神经网络层和函数,简化了模型的定义和训练过程。
  • 支持分布式训练:PyTorch支持在多个GPU和多台机器上进行分布式训练,可以加速训练过程,处理大规模的数据和模型。

  总体而言,PyTorch提供了一个灵活而强大的平台,使得深度学习的研究和开发更加便捷和高效。它的简洁的API和丰富的功能使得用户可以快速实现复杂的神经网络模型,并在各种任务中取得优秀的性能。

二、实验环境

  本系列实验使用如下环境

conda create -n DL python==3.11
conda activate DL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

三、PyTorch数据结构

0、分类

  • Tensor(张量):Tensor是PyTorch中最基本的数据结构,类似于多维数组。它可以表示标量、向量、矩阵或任意维度的数组。
  • Tensor的操作:PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。
  • Variable(变量):Variable是对Tensor的封装,用于自动求导。在PyTorch中,Variable会自动跟踪和记录对其进行的操作,从而构建计算图并支持自动求导。在PyTorch 0.4.0及以后的版本中,Variable被废弃,可以直接使用Tensor来进行自动求导。
  • Dataset(数据集):Dataset是一个抽象类,用于表示数据集。通过继承Dataset类,可以自定义数据集,并实现数据加载、预处理和获取样本等功能。PyTorch还提供了一些内置的数据集类,如MNIST、CIFAR-10等,用于方便地加载常用的数据集。
  • DataLoader(数据加载器):DataLoader用于将Dataset中的数据按批次加载,并提供多线程和多进程的数据预读功能。它可以高效地加载大规模的数据集,并支持数据的随机打乱、并行加载和数据增强等操作。
  • Module(模块):Module是PyTorch中用于构建模型的基类。通过继承Module类,可以定义自己的模型,并实现前向传播和反向传播等方法。Module提供了参数管理、模型保存和加载等功能,方便模型的训练和部署。

1、Tensor(张量)

  Tensor(张量)是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。

1. 维度(Dimensions)

  Tensor(张量)的维度(Dimensions)是指张量的轴数或阶数。在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。

在这里插入图片描述

2. 数据类型(Data Types)

  PyTorch中的张量可以具有不同的数据类型:

  • torch.float32或torch.float:32位浮点数张量。
  • torch.float64或torch.double:64位浮点数张量。
  • torch.float16或torch.half:16位浮点数张量。
  • torch.int8:8位整数张量。
  • torch.int16或torch.short:16位整数张量。
  • torch.int32或torch.int:32位整数张量。
  • torch.int64或torch.long:64位整数张量。
  • torch.bool:布尔张量,存储True或False。

【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量)及其维度(Dimensions)、数据类型(Data Types)

3. GPU加速(GPU Acceleration)

  GPU(图形处理器)是一种强大的硬件设备,可以并行处理大量数据,加速深度学习任务的执行。在PyTorch中,可以使用GPU加速来进行张量计算。

查看可用gpu
import torch# 检测系统中是否有可用的GPU
if torch.cuda.is_available():# 输出可用的GPU设备数量print(f"GPU可用,可用的GPU设备数量:{torch.cuda.device_count()}")# 输出每个可用GPU设备的名称for i in range(torch.cuda.device_count()):print(f"GPU设备 {i}: {torch.cuda.get_device_name(i)}")
else:print("GPU不可用")

在这里插入图片描述

张量移动

  要在GPU上执行张量计算,首先需要确保系统具有兼容的GPU并安装了相应的GPU驱动程序和CUDA(Compute Unified Device Architecture)工具包(详见实验环境部分)。接下来,使用以下步骤将张量移动到GPU上:

import torch# 检查GPU是否可用
if torch.cuda.is_available():# 创建一个张量并将其移动到GPU上tensor = torch.tensor([1, 2, 3])tensor = tensor.to('cuda')print(tensor)# 进行张量计算result = tensor * 2print(result)# 将张量移回CPUresult = result.to('cpu')print(result)
else:print("GPU不可用")

在这里插入图片描述

经典语句device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import torchdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")x = torch.tensor([1, 2, 3]).to(device)
result = x * 2
print(result)

这篇关于【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714875

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github

C#实现SHP文件读取与地图显示的完整教程

《C#实现SHP文件读取与地图显示的完整教程》在地理信息系统(GIS)开发中,SHP文件是一种常见的矢量数据格式,本文将详细介绍如何使用C#读取SHP文件并实现地图显示功能,包括坐标转换、图形渲染、平... 目录概述功能特点核心代码解析1. 文件读取与初始化2. 坐标转换3. 图形绘制4. 地图交互功能缩放

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达