RAG (Retrieval Augmented Generation)简介

2024-02-16 03:20

本文主要是介绍RAG (Retrieval Augmented Generation)简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景

目前大模型很多,绝大部分大模型都是通用型大模型,也就是说使用的是标准的数据,比如wikipedia,百度百科,。。。。 中小型企业一般都有自己的知识库,而这些知识库的数据没有在通用型的大模型中被用到或者说训练到。如果中小型企业要适合自己本身业务需要的大模型,当然理想的方法是重新训练数据,而这些数据有其自身业务场景的数据。 现实是自身训练无论是人力成本,数据成本,计算成本都是不可行的。那么一种基于通用大模型,并外挂本地知识库的人工智能方法RAG(Retrieval Augmented Generation)就运用而生。通过这种方法,中小型企业可以用很少的人力,物力,在不改动通用大模型的情况下,就能结合自身需要,为自己的业务场景服务。

2. 框架图和简单介绍

接下来,我们就来介绍RAG。我们先看标准的RAG流程或框架图,然后在下面的文字中介绍两种优化的RAG,我们还会给出处于研究中或朦胧状态的新的RAG的出处或文献参考。本文是基于下面的LLM或RAG课程的总结。【1】【2】【3】。

2.1 入库

那么现在,让我们先看标准的RAG流程或框架图:先是第一步入库,入库就是把原始分本分割,然后每个分割后的短文本,进行分词(chunk),然后向量映射(embedding),最后入库。

                                                        RAG 第一步入库

                                                            图 1

图1 是RAG的第一步,文本入库。库可以是一般数据库,文件系统都可以,我们这里用向量数据库作为例子。像目前的智能客服机器人,一般就是使用向量数据库。

2.1.1 分本分割

其中,文本分割是因为背景提示窗口大小的限制,一般只有几千个Token。Token是指最小的单词,字符和词组的向量。

​​​​​​​

                                                          图 2

我们的原始文件很长,但提示窗口一般只容纳几千个Token,所以,要将文本分割,这个就是文本分割。图2中,我们将一篇长文分割成4篇小文。

2.2 RAG 查询

入库成功以后,就是查询,然后就是augmented,augmented在这里是指将查询和向量数据库查出的结果合成作为一个新的提示,然后查询LLM(大语言模型)。 

 ​​​​​​​​​​​​​​​​​​​​​

                                                                     图 3                                   

从图3中,我们看出框架图组件有向量数据库(Vector Database)和大模型。向量数据库存储着中小企业的业务场景的本地知识库,用户先从向量数据库,就是本地知识库查询,然后将查询的结果作为大模型的输入,进行查询。

2.2.1 提示查询

当我们开始查询时,我们先查询本地知识库,就是向量数据库,然后向量数据库抽取数据,回复提问。就是图3中的第1,2,3步骤。

2.2.2 合成答复和查询

当向量数据库回复后,我们将查询向量数据库的问题和向量数据库的回答合成一个提示,再查询大语言模型。就是图3中的4,5步骤。

2.2.3 大模型回复/completion

合成后的提示输入到大模型中,得到回复/completion,就完成了一次RAG。 

3. 高级/优化的RAG

A. Query expansion

待下文发表

B. Cross-encoding DeRank

待下文发表

4. 处于朦胧时期的高级RAG

                                                图 4

5. 参考资料

[1]. coursera.org:Generative AI with large language model

[2]. deepLearning.ai:Advanced Retrieval for AI with Chroma

[3]. deep learning.ai:   Building and Evaluating Advanced RAG Applications

[4] 领英LLM的一些专栏

沈建军于上海 2024年2月14日周三

2)2024年2月15日小修改

这篇关于RAG (Retrieval Augmented Generation)简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713345

相关文章

Java Docx4j类库简介及使用示例详解

《JavaDocx4j类库简介及使用示例详解》Docx4j是一个强大而灵活的Java库,非常适合需要自动化生成、处理、转换MicrosoftOffice文档的服务器端或后端应用,本文给大家介绍Jav... 目录1.简介2.安装与依赖3.基础用法示例3.1 创建一个新 DOCX 并添加内容3.2 读取一个已存

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

MySQL 索引简介及常见的索引类型有哪些

《MySQL索引简介及常见的索引类型有哪些》MySQL索引是加速数据检索的特殊结构,用于存储列值与位置信息,常见的索引类型包括:主键索引、唯一索引、普通索引、复合索引、全文索引和空间索引等,本文介绍... 目录什么是 mysql 的索引?常见的索引类型有哪些?总结性回答详细解释1. MySQL 索引的概念2

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

rust 中的 EBNF简介举例

《rust中的EBNF简介举例》:本文主要介绍rust中的EBNF简介举例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 什么是 EBNF?2. 核心概念3. EBNF 语法符号详解4. 如何阅读 EBNF 规则5. 示例示例 1:简单的电子邮件地址

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async