时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式

2024-02-16 01:38

本文主要是介绍时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:

https://zh.wikipedia.org/w/index.php?title=%E7%A7%BB%E5%8B%95%E5%B9%B3%E5%9D%87&variant=zh-cn#_note-0

移动平均(英语:moving average,MA),又称“移动平均线”简称均线,是技术分析中一种分析时间序列数据的工具。最常见的是利用股价、回报或交易量等变数计算出移动平均。

移动平均可抚平短期波动,反映出长期趋势或周期。数学上,移动平均可视为一种卷积。

1)SMA

简单移动平均(英语:simple moving average,SMA)是某变数之前n个数值的未作加权算术平均。例如,收市价的10日简单移动平均指之前10日收市价的平均数。若设收市价为p_{1}p_{n},则方程式为:

SMA={p_{1}+p_{2}+\cdots +p_{n} \over n}

当计算连续的数值,一个新的数值加入,同时一个旧数值剔出,所以无需每次都重新逐个数值加起来:

SMA_{t1,n}=SMA_{t0,n}-{p_{1} \over n}+{p_{n+1} \over n}

2) WMA

加权移动平均(英语:weighted moving average,WMA)指计算平均值时将个别数据乘以不同数值,在技术分析中,n日WMA的最近期一个数值乘以n、次近的乘以n-1,如此类推,一直到0:

WMA_{M}={np_{M}+(n-1)p_{M-1}+\cdots +2p_{M-n+2}+p_{M-n+1} \over n+(n-1)+\cdots +2+1}

由于WMA_{​{M+1}}WMA_{​{M}}的分子相差np_{M+1}-p_{M}-\cdots -p_{M-n+1},假设p_{M}+p_{M-1}+\cdots +p_{M-n+1}为总和M:

总和M+1 =总和M +p_{M+1}-p_{M-n+1}

分子M+1 =N_{M+1}=分子M +np_{M+1}-总和M

WMA_{M+1}={N_{M+1} \over n+(n-1)+\cdots +2+1}

留意分母为三角形数,方程式为{n(n+1) \over 2}

下图显示出加权是随日子远离而递减,直至递减至零(N=15)。

3) EMA

指数移动平均(英语:exponential moving average,EMAEXMA)是以指数式递减加权的移动平均。各数值的加权影响力随时间而指数式递减,越近期的数据加权影响力越重,但较旧的数据也给予一定的加权值。下图是一例子(N=15):

加权的程度以常数α决定,α数值介乎0至1。α也可用天数N来代表:\alpha ={2 \over {N+1}},所以,N=19天,代表α=0.1。

设时间t的实际数值为Yt,而时间t的EMA则为St;时间t-1的EMA则为St-1,计算时间t≥2是方程式为:

S_{t}=\alpha \times Y_{t}+(1-\alpha )\times S_{t-1}

设今日(t1)价格为p,则今日(t1)EMA的方程式为:

{\text{EMA}}_{t1}={\text{EMA}}_{t0}+\alpha \times (p-{\text{EMA}}_{t0})

{\text{EMA}}_{t0}分拆开来如下:

{\text{EMA}}={p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots  \over 1+(1-\alpha )+(1-\alpha )^{2}+(1-\alpha )^{3}+\cdots }

理论上这是一个无穷级数,但由于1-α少于1,各项的数值会越来越细,可以被忽略。分母方面,若有足够多项,则其数值趋向1/α。即,

{\text{EMA}}=\alpha \times \left(p_{1}+(1-\alpha )p_{2}+(1-\alpha )^{2}p_{3}+(1-\alpha )^{3}p_{4}+\cdots \right)

假设k项及以后的项被忽略,即\alpha \times \left((1-\alpha )^{k}+(1-\alpha )^{k+1}+\cdots \right),重写后可得\alpha \times (1-\alpha )^{k}\times \left(1+(1-\alpha )+(1-\alpha )^{2}\cdots \right),相当于(1-\alpha )^{k}。所以,若要包含99.9%的加权,解方程k={\log(0.001) \over \log(1-\alpha )}即可得出k。由于当N不断增加,\log \,(1-\alpha )将趋向{-2 \over N+1},简化后k大约等于3.45\times (N+1)

 

这篇关于时间序列分析 - 移动平均SMA, WMA, EMA(EWMA) 之理论公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713134

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对