【python】pyarrow.parquet+pandas:读取及使用parquet文件

2024-02-16 00:04

本文主要是介绍【python】pyarrow.parquet+pandas:读取及使用parquet文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、前言
    • 1. 所需的库
    • 2. 终端指令
  • 二、pyarrow.parquet
    • 1. 读取Parquet文件
    • 2. 写入Parquet文件
    • 3. 对数据进行操作
    • 4. 导出数据为csv
  • 三、实战
    • 1. 简单读取
    • 2. 数据操作(分割feature)
    • 3. 迭代方式来处理Parquet文件
    • 4. 读取同一文件夹下多个parquet文件

  Parquet是一种用于列式存储压缩数据的文件格式,广泛应用于大数据处理和分析中。Python提供了多个库来处理Parquet文件,例如pyarrow和fastparquet。
  本文将介绍如何使用pyarrow.parquet+pandas库操作Parquet文件。

一、前言

1. 所需的库

import pyarrow.parquet as pq
import pandas as pd

  pyarrow.parquet模块,可以读取和写入Parquet文件,以及进行一系列与Parquet格式相关的操作。例如,可以使用该模块读取Parquet文件中的数据,并转换为pandas DataFrame来进行进一步的分析和处理。同时,也可以使用这个模块将DataFrame的数据保存为Parquet格式。

2. 终端指令

conda create -n DL python==3.11
conda activate DL
conda install pyarrow

pip install pyarrow

二、pyarrow.parquet

  当使用pyarrow.parquet模块时,通常的操作包括读取和写入Parquet文件,以及对Parquet文件中的数据进行操作和转换。以下是一些常见的使用方法:

1. 读取Parquet文件

import pyarrow.parquet as pqparquet_file = pq.ParquetFile('file.parquet')
data = parquet_file.read().to_pandas()
  • 使用pq.ParquetFile打开Parquet文件;
  • 使用read().to_pandas()方法将文件中的数据读取为pandas DataFrame

2. 写入Parquet文件

import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pqdf = pd.DataFrame({'col1': [1, 2, 3], 'col2': ['a', 'b', 'c']})
table = pa.Table.from_pandas(df)pq.write_table(table, 'output.parquet')
  • 将pandas DataFrame转换为Arrow的Table格式;
  • 使用pq.write_table方法将Table写入为Parquet文件。
parquet_file = pq.ParquetFile('output.parquet')
data = parquet_file.read().to_pandas()
print(data)

在这里插入图片描述

3. 对数据进行操作

import pyarrow.parquet as pq# 读取Parquet文件
parquet_file = pq.ParquetFile('output.parquet')
data = parquet_file.read().to_pandas()# 对数据进行筛选和转换
filtered_data = data[data['col1'] > 1]  # 筛选出col1大于1的行
print(filtered_data)
transformed_data = filtered_data.assign(col3=filtered_data['col1'] * 2)  # 添加一个新列col3,值为col1的两倍# 打印处理后的数据
print(transformed_data)

在这里插入图片描述

4. 导出数据为csv

import pyarrow.parquet as pq
import pandas as pdparquet_file = pq.ParquetFile('output.parquet')
data = parquet_file.read().to_pandas()df = pd.DataFrame(data)
csv_path = './data.csv'
df.to_csv(csv_path)
print(f'数据已保存到 {csv_path}')

在这里插入图片描述

三、实战

1. 简单读取

import pyarrow.parquet as pq
import pandas as pdparquet_file = pq.ParquetFile('./train_parquet/part-00014-918feee1-1ad5-4b08-8876-4364cc996930-c000.snappy.parquet')
data = parquet_file.read().to_pandas()df = pd.DataFrame(data)
csv_path = './data2.csv'
df.to_csv(csv_path)
print(f'数据已保存到 {csv_path}')

关于PyCharm调试操作可参照:PyCharm基础调试功能详解

在这里插入图片描述
点击右侧蓝色的View as DataFrame
在这里插入图片描述

  如图所示,feature在同一个格内,导出为:
在这里插入图片描述
注意看,省略号...位置真的就是省略号字符,没有数字,即

[0.27058824 0.         0.05882353 ... 0.47843137 0.36862745 0.97647059]

2. 数据操作(分割feature)

import pyarrow.parquet as pq
import pandas as pdparquet_file = pq.ParquetFile('./train_parquet/part-00014-918feee1-1ad5-4b08-8876-4364cc996930-c000.snappy.parquet')
data = parquet_file.read().to_pandas()# 将feature列中的列表拆分成单独的特征值
split_features = data['feature'].apply(lambda x: pd.Series(x))# 将拆分后的特征添加到DataFrame中
data = pd.concat([data, split_features], axis=1)
print(data.head(2))
# 删除原始的feature列
data = data.drop('feature', axis=1)# 保存到csv文件
csv_path = './data1.csv'
data.to_csv(csv_path, index=False)print(f'数据已保存到 {csv_path}')
  • 调试打开:
    在这里插入图片描述
  • excel打开:
    在这里插入图片描述
  • 文件大小对比
    在这里插入图片描述

部分内容援引自博客:使用python打开parquet文件

3. 迭代方式来处理Parquet文件

  如果Parquet文件非常大,可能会占用大量的内存。在处理大型数据时,建议使用迭代的方式来处理Parquet文件,以减少内存的占用。以下是一种更加内存友好的方式来处理Parquet文件:

import pyarrow.parquet as pq
import pandas as pd
import timestart_time = time.time()  # 记录开始时间# 使用迭代器迭代读取Parquet文件中的数据
data_iterator = pq.ParquetFile('./train_parquet/part-00014-918feee1-1ad5-4b08-8876-4364cc996930-c000.snappy.parquet').iter_batches(batch_size=100)# 初始化空的DataFrame用于存储数据
data = pd.DataFrame()# 逐批读取数据并进行处理
for batch in data_iterator:# 将RecordBatch转换为Pandas DataFramedf_batch = batch.to_pandas()# 将feature列中的列表拆分成单独的特征值split_features = df_batch['feature'].apply(lambda x: pd.Series(x))# 将拆分后的特征添加到DataFrame中df_batch = pd.concat([df_batch, split_features], axis=1)# 将处理后的数据追加到DataFrame中data = data._append(df_batch, ignore_index=True)# 删除原始的feature列
data = data.drop('feature', axis=1)# 保存到csv文件
csv_path = './data3.csv'
data.to_csv(csv_path, index=False)end_time = time.time()  # 记录结束时间
print(f'数据已保存到 {csv_path}')
print(f'总运行时间: {end_time - start_time} 秒')

输出:

数据已保存到 ./data3.csv
总运行时间: 4.251184940338135

4. 读取同一文件夹下多个parquet文件

import os
import pyarrow.parquet as pq
import pandas as pd
import timestart_time = time.time()  # 记录开始时间folder_path = './train_parquet/'
parquet_files = [f for f in os.listdir(folder_path) if f.endswith('.parquet')]# 初始化空的DataFrame用于存储数据
data = pd.DataFrame()# 逐个读取Parquet文件中的数据并进行处理
for file in parquet_files:file_path = os.path.join(folder_path, file)data_iterator = pq.ParquetFile(file_path).iter_batches(batch_size=1024)for batch in data_iterator:# 将RecordBatch转换为Pandas DataFramedf_batch = batch.to_pandas()# 将feature列中的列表拆分成单独的特征值split_features = df_batch['feature'].apply(lambda x: pd.Series(x))# 将拆分后的特征添加到DataFrame中df_batch = pd.concat([df_batch, split_features], axis=1)# 将处理后的数据追加到DataFrame中data = data._append(df_batch, ignore_index=True)# 删除原始的feature列
data = data.drop('feature', axis=1)# 保存到csv文件
csv_path = './data.csv'
data.to_csv(csv_path, index=False)end_time = time.time()  # 记录结束时间
print(f'数据已保存到 {csv_path}')
print(f'总运行时间: {end_time - start_time} 秒')

这篇关于【python】pyarrow.parquet+pandas:读取及使用parquet文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712934

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC