机器学习---规则学习(序贯覆盖、单条规则学习、剪枝优化)

2024-02-15 19:52

本文主要是介绍机器学习---规则学习(序贯覆盖、单条规则学习、剪枝优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 序贯覆盖

回归: 分类:

聚类:

逻辑规则:

读作:若(文字1且文字2且...),则目标概念成立

规则集:充分性与必要性;冲突消解:顺序规则、缺省规则、元规则

eg:

命题逻辑 → 命题规则

原子命题:𝐴,𝐵,𝐶,…A,B,C,…;逻辑连词,,,,,¬↔,→,←,⋀,⋁,¬…

一阶逻辑 →阶规则

常量:𝑎,𝑏,𝑏,…,1,2,3,…变量:𝐴,𝐵,𝐶,…A,B,C,…

(n元)谓词/函数p/n, f/n;项:常量|变量|函数/谓词(项1,项2

原子公式:函数/谓词(项1,项2)父亲(X,Y),自然数(39),偶数(后继(1)),

逻辑连词:↔,→,←,⋀,⋁,¬…;逻辑量词

序贯覆盖:在训练集上每学到一条规则,就将改规则覆盖的样例去除,然后以剩下的样例组成训练

集重复上述过程( 分治策略)。

 

2. 单条规则学习

目标:寻找一组最优的逻辑文字来构成规则体。本质:搜索问题;搜索空间大,易造成组合爆炸。

方法:自顶向下:一般到特殊( 泛化);自底向上:特殊到一般( 特化)

自顶向下策略:一般到特殊(特化)

 

自底向上策略:特殊到一般(泛化)

规则评判:增加/删除哪一个候选文字;准确率;信息熵增益(率);基尼系数 ……

规避局部最优:集束搜索:每次保留最优的多个候选规则 ……

3. 剪枝优化

贪心算法导致的非最优的算法:

预剪枝:似然率统计量:

后剪枝:剪错剪枝(REP):穷举所有可能的剪枝操作(删除文字、删除规则),复杂度非常高,

用验证集反复剪枝直到精确率无法提高。

二者结合:IREP:每生成一条新规则即对进行REP剪枝

IREP*:是对IREP的优化

RIPPER:

 IREP*生成规则集,选取其规则,找到其覆盖的样例,重新生成规则,特化原规则在泛化,把原规

则和新规则放入规则集中进行评价,留下最好的,反复优化直到无法进步。

RIPPER将所有规则放在一起优化,通过全局的考虑来缓解序贯覆盖的局部性。 

这篇关于机器学习---规则学习(序贯覆盖、单条规则学习、剪枝优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712375

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分