辗转相除法和同余原理

2024-02-15 17:04
文章标签 原理 除法 辗转 同余

本文主要是介绍辗转相除法和同余原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

辗转相除法和同余原理

  • 辗转相除法
  • 同余原理

辗转相除法

  辗转相除法就是用来求出两个数的最大公约数的方法,那么这个方法怎么用呢?举个例子:有两个数,a=12,b=8,要求这两个数的最大公约数,首先让a%b得到4,然后让a=b,b=a%b,即现在a=8,b=4;继续用a%b得到0,然后让a=b,b=a%b,现在a=4,b=0。当b等于0的时候,a的值就是原来两个数的最大公约数
  代码如下

int gcd(int a, int b)
{return b == 0 ? a : gcd(b, a % b);
}

证明辗转相除法就是证明以下关系
g c d ( a , b ) = g c d ( b , a m o d b ) a gcd(a,b)=gcd(b,a\bmod b )a gcd(a,b)=gcd(b,amodb)a
假设 a m o d b = r a\bmod b=r amodb=r
则需要证明 g c d ( a , b ) = g c d ( b , r ) gcd(a,b)=gcd(b,r ) gcd(a,b)=gcd(b,r)
因为 a m o d b = r a\bmod b=r amodb=r成立,所以下面连等式必定成立
a = b ∗ q + r \begin{align} a=b*q+r \end{align} a=bq+r
r = a − b ∗ q \begin{align} r=a-b*q \end{align} r=abq
其中q为自然整数
假设u是a和b的公共因子,则有:
a = s ∗ u b = t ∗ u \begin{split} a=s*u\\ b=t*u \end{split} a=sub=tu
将a和b带入到式子(1)当中得到
r = s ∗ u − t ∗ u ∗ q = ( s − t ∗ q ) ∗ u \begin{split} r &= s*u-t*u*q\\ &= (s-t*q)*u \end{split} r=sutuq=(stq)u
  这说明,u如果是a和b的公因子,那么u也是r的公因子,假设v是b和r的公因子,同理可得v也是a的公因子。
  综上,a和b的每个公因子,也是b和r的公因子,反之亦然。所以a和b的全体公因子集合 = b和r的全体公因子集合
g c d ( a , b ) = g c d ( b , a m o d b ) a gcd(a,b)=gcd(b,a\bmod b )a gcd(a,b)=gcd(b,amodb)a
证毕
  在求出a和b最大公约数r之后,最小公倍数就是
a ∗ b / r a*b/r ab/r
  转换成代码就是

int lcm(int a, int b)
{return a * b / gcd(a, b);
}

  在了解到以上前置知识后,来做一道题目
在这里插入图片描述
神奇的数字
  就用示例2为例,两个数分别是2和3,要求第4个神奇的数字,其实我们可以给出一个范围,使得第4个神奇的数字是在这个范围里面的,因为是第4个神奇的数字,那么这个数字最大不会超过2*4也就是8,范围就可以确定为【0,8】,因为即使没有3,求得可以被2整除的第4个数字最大也就是8了,由于又加了一个数字,那么在范围【0,8】内神奇数字的数目肯定是变多了的,那么第4个神奇数字必定是在【0,8】之间
  在确定了范围之后,我们可以定义一个函数f(x),该函数的返回值就是从0到x包含有多少个神奇数字。还是以2和3为例
在这里插入图片描述
  可以看到,在【0,8】范围内6既是2的倍数也是3的倍数,所以不管是对于2来说还是对于3来说,6都是神奇数字,即6被算作了两次神奇数字,那么我们只要进行去重,得到的神奇数字个数就是函数f(x)的返回值
  在确定了范围还有f(x)后,我们就可以使用二分法解决这道问题
代码如下:

long long gcd(int a, int b) //求最大公约数{return b == 0 ? a : gcd(b, a % b);}long long lcm(int a, int b) //求最小公倍数{return a * b / gcd(a, b);}//检查x右边有多少个数是可以被a或者b整除long long check(long long x, int a, int b) {return x / a + x / b - x / lcm(a, b);}int nthMagicalNumber(int n, int a, int b) {long long mod = 1e9 + 7;long long l = 0;long long r = (n % mod) * min(a, b);while (l < r) {long long m = (l + r) / 2;if (check(m, a, b) >= n)r = m;elsel = m + 1;}return l % (mod);}

同余原理

加法的同余原理
( a + b ) m o d c = a m o d c + b m o d c (a+b)\bmod c=a\bmod c+b\bmod c (a+b)modc=amodc+bmodc
乘法的同余原理
( a ∗ b ) m o d c = ( a m o d c ) ∗ ( b m o d c ) (a*b)\bmod c=(a\bmod c)*(b\bmod c) (ab)modc=(amodc)(bmodc)

  以加法的同余原理为例,当题目要求结果对c进行取模运算时,但是在得到结果的时候,也就是a+b运算过程中,加出来的结果已经超出了当前类型的最大值,就发生了溢出的现象,这个时候再对溢出后的结果进行取模已经没有意义了,所以就需要在运算之前就分别对两个数进行取模防止溢出

减法的同余原理
( a − b ) m o d c = ( ( a m o d c ) − ( b m o d c ) + c ) m o d c (a-b)\bmod c=((a \bmod c)-(b \bmod c)+c) \bmod c (ab)modc=((amodc)(bmodc)+c)modc
  在减法的同余原理中需要对
( a m o d c ) − ( b m o d c ) (amodc)−(bmodc) (amodc)(bmodc)加上c是为了防止两数相减得到一个负数的情况

这篇关于辗转相除法和同余原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711974

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja